Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1423761, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39081524

RESUMEN

The Mediterranean region's harsh conditions, characterized by low rainfall, high solar radiation, and elevated temperatures, pose challenges for vegetation, particularly in the face of climate change. Cultivated olive (Olea europaea subsp. europaea var. europaea) holds historical and economic significance as one of the oldest crops in the Mediterranean. Due to their high germplasm diversity and greater flowering abundance compared to the offspring of cultivated olives, wild olives (Olea europaea subsp. europaea var. sylvestris) could be utilized for selecting new olive cultivars capable of adapting to a changing climate. This research aimed to compare the effects of salt and drought stress on wild and cultivated genotypes by analyzing morphological, physiological, and biochemical parameters. Results showed that shoot length, shoot dry mass, and leaf area are key drought stress indicators in wild olive trees. The results indicated the olive trees more susceptible to salinity stress had lower Na+ and Cl- concentrations in their leaves and took longer to stabilize salt ion levels. Decreased K+ content in roots across all treatments indicated a general stress response. The uptake of Ca2+ appears to be the most energy-efficient response of olive trees to short-term salinity and drought. In contrast to proline and malondialdehyde, trends in superoxide dismutase activity suggest that it is a reliable indicator of salinity and drought stress. Regarding olive adaptability to salinity stress, promising results obtained with two wild olive genotypes merit their further physiological study.

2.
Food Chem X ; 22: 101386, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38681233

RESUMEN

Extreme environmental conditions affect the synthesis and accumulation of bioactive metabolites in halophytic plants. The aim of this study was to investigate the presence and quantity of key health-promoting phytochemicals in Croatian sea fennel, one of the most popular Mediterranean halophytes with a wide range of uses. The EOs were characterised by a high content of limonene (up to 93%), while the fatty acid profile shows a low content of oleic acid and the presence of valuable linoleic acid (ω-6) and linolenic acid (ω-3) in high percentages. The dominances of lutein and α-tocopherol were also confirmed in all samples. The results confirm the great variability in the chemistry of sea fennel populations in the Mediterranean region, with significant differences in the composition of the Croatian samples compared to the others, as well as the presence and high concentrations of the analysed bioactive compounds that contribute to the plant's health-promoting attributes.

3.
Plants (Basel) ; 12(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36986983

RESUMEN

Plant adaptations to low soil phosphorus (P) availability have been intensively studied in Brassica sp. in an attempt to identify the mechanisms involved in P uptake and utilization. The present pot experiment was conducted to evaluate the relationships between plant shoot and root growth, P uptake and use efficiency parameters, and P fractions and enzyme activity, in two species grown in three soil types. The aim of this study was to determine whether adaptation mechanisms are soil-dependent. Two kale species were grown in soils typical for coastal Croatia (terra rossa, rendzina, and fluvisol) with low P availability. Plants grown in fluvisol had the highest shoot biomass and accumulated most P, whereas plants developed the longest roots in terra rossa. Phosphatase activity differed among soils. P use efficiency differed among soils and species. Genotype IJK 17 showed better adaptation to low P availability, which was related to better uptake efficiency. In general, soils differed in inorganic and organic P fractions in rhizosphere soil, but no difference between genotypes was found. The activities of alkaline phosphatase and phosphodiesterase were negatively correlated with most organic P fractions, suggesting their function in the mineralization of soil organic P. Kale species activate different mechanisms of P uptake and utilization when grown in contrasting soil types, suggesting that specific responses to the soil type were more important than the genotypic difference.

4.
Front Plant Sci ; 12: 712005, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34527009

RESUMEN

In the face of climate change, water deficit and increasing soil salinity pose an even greater challenge to olive cultivation in the Mediterranean basin. Due to its tolerance to abiotic stresses, wild olive (Olea europaea subsp. europaea var. sylvestris) presents a good candidate in breeding climate-resilient olive varieties. In this study, the early response of the native Croatian wild olive genotype (WOG) to salinity was evaluated and compared with that of well-known cultivars (cv.) Leccino and Koroneiki. Potted olive plants were exposed either to 150 mM NaCl or 300 mM mannitol for 3 weeks to distinguish between the osmotic and ionic components of salt stress. To determine the impact of the plant age on salinity, 1-, 2-, and 3-year-old WOG plants were used in the study. The growth parameters of both the cultivars and WOG of different ages decreased in response to the mannitol treatment. In contrast to cv. Leccino, the NaCl treatment did not significantly affect the growth of cv. Koroneiki or WOG of any age. The contents of Na+ and Cl- were considerably higher in the salt-treated WOG, regardless of age, compared with the cultivars. However, while both treatments significantly reduced the K+ content of cv. Koroneiki, that nutrient was not significantly affected in either cv. Leccino or WOG. Unlike the cultivars and older WOG, the NaCl treatment caused a significant decline of photosynthetic pigments in the 1-year-old WOG. The cultivars and WOG of different ages experienced a similar drop in the chlorophyll a content under the isotonic mannitol treatment. The absence of lipid peroxidation, modulation of superoxide dismutase, and guaiacol peroxidase activity were noted in all WOG ages under both stressors. These data suggest that WOG resilience to salinity is associated with its large leaf capacity for Na+ and Cl- accumulation, K+ retention, and its adaptable antioxidative mechanisms. The results are promising with regard to obtaining a new olive cultivar with better resilience to soil salinity.

5.
Front Plant Sci ; 11: 616431, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33552108

RESUMEN

Sensory quality is of increasing importance to consumer decisions in choosing a product, and it is certainly an important factor in repurchasing in terms of meeting the necessary aroma quality and taste properties. To better understand the effects of rootstocks and scions on fruit quality, the sensory profile and volatile aroma composition of the fruits of hydroponically grown tomato plants were evaluated. Experiments were established using the tomato cultivars Clarabella and Estatio as scions during two spring-summer seasons. In both experiments, the scion plants were self-grafted or grafted onto rootstocks of cultivars Arnold, Buffon, Emperador, and Maxifort, with the exception that in experiment 1, the Estatio scion was not grafted onto Buffon. The scions and rootstocks caused differences in observed sensory properties in both experiments. For most of the sensory traits, interaction effects between scion and rootstock were observed. Compared to those obtained from self-grafted Clarabella, the fruits obtained from Clarabella grafted onto Buffon in the first experiment and Clarabella grafted onto Arnold in the second experiment were sweeter by one measurement unit. The contents of seven aldehydes, six alcohols, five terpenes and two ketones were determined. A lower accumulation of total aldehydes, 22-45%, due to lower amounts of pentanal, (E)-2-heptanal and (E,E)-2,4-decadienal, was found in the fruits from plants where Estatio was rootstock compared with the other rootstocks treatments. Clarabella as a rootstock increased (Z)-3-hexenal + (E)-2-hexenal accumulation from 35 to 65%. Grafting Clarabella onto the tested rootstocks led to a change in the composition of volatile compounds, while differences between the combinations with Estatio as a scion were generally not recorded. Fruits from self-grafted Clarabella had higher (Z)-3-hexenal + (E)-2-hexenal concentrations than did fruits from Clarabella grafted onto Arnold (for 54%) and Emperador (for 68%), and in the second experiment, grafting onto all commercial rootstocks reduced (Z)-3-hexenal + (E)-2-hexenal concentrations, from 25 to 74%, compared to those from self-grafted Clarabella. Higher (+)-2-carene and (-)-caryophyllene oxide concentrations were attained in plants in which Clarabella was grafted onto Maxifort (by 56%) and plants in which Estatio was grafted onto Arnold (by 36%) compared to self-grafted plants. This study showed the possibility of altering the composition of volatile aroma compounds and sensory properties of tomato fruits by the use of grafting techniques.

6.
Front Plant Sci ; 9: 1749, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30559753

RESUMEN

Shallots are a valuable minor Allium crop, and are propagated vegetatively and maintained in home gardens across generations along the Croatian coast and island areas. Shallot landraces growing along the Croatian coast fall into three genotypes: Allium cepa Aggregatum group (2n = 2x = 16), A. × proliferum (Moench) Schard. (2n = 2x = 16), and A. × cornutum Clementi ex Vis. (2n = 3x = 24), among which A. × cornutum is the most widespread. The aim of this study was to differentiate shallot accessions collected from local farmers using morphological markers. Also, the chemical composition including phenolic content, phenolic profile, total antioxidant capacity, and mineral composition, of shallot accessions was compared with that of the local landraces of common onion, and with market available shallot and common onion cultivars. Based on morphological observations and using multivariate classification, shallot landraces were classified into three distinct groups. Properties, based on which A. × cornutum can be differentiated from A. cepa Aggregatum and A. × proliferum, are stamen morphology, stamen length, leaf and scape vegetative properties, number of bulbs in cluster, cluster mass, and bulb diameter. Flower diameter and flower pedicel length differentiate A. × cornutum and A. × proliferum from A. cepa Aggregatum. Significant variability was observed in the biochemical profiles across tested accessions. Compared with the commercial common onion cultivars, local shallot accessions have higher bulb N, P, and K content. The major phenolic compounds identified in shallots were quercetin-4'-glucoside and quercetin-3,4'-diglucoside. Additionally, several other minor phenolic compounds were also identified. Morphological and biochemical profiles were evaluated using Partial Least Square (PLS) analysis. Specific morphological traits and biochemical markers for possible species identification are proposed.

7.
Front Plant Sci ; 9: 86, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29459878

RESUMEN

Bemisia tabaci is one of the most devastating pests in tomato greenhouse production. Insecticide resistance management for B. tabaci requires a novel approach that maximizes non-chemical methods for pest control. The aim of this study was to test the effects of rootstocks on B. tabaci populations in hydroponically grown tomato plants. In order to contribute to the better understanding of the mechanisms defining the attractiveness of plant to the aerial pest, the effects of rootstocks on leaf anatomy and the amino acid composition of phloem sap were assessed. A two-factorial experimental design was adopted using cultivars (rootstock cultivars and Clarabella) grown as either non-grafted or grafted with cultivar Clarabella as a scion. The rootstock cultivars included Arnold, Buffon, Emperador, and Maxifort. A reduction in B. tabaci density was observed using all rootstock cultivars. The number of adult individuals per leaf was 2.7-5.4 times lower on rootstock cultivars than on Clarabella. The number of large nymphs per square centimeter was at least 24% higher on non-grafted Clarabella compared with all other treatments. The leaf lamina thickness and mesophyll thickness were lower in self-grafted Clarabella than in non-grafted or in one grafted on rootstock cultivars; however, the extent of this reduction depended on the rootstock. The leaves with thinner laminae were generally less attractive to B. tabaci. Eighteen amino acids were detected in the exudates of phloem sap. In all treatments, the most abundant amino acid was γ-aminobutyric acid (GABA), followed by proline, serine, alanine, and histidine. The scion cultivar Clarabella was the most attractive to B. tabaci and had a higher content of leucine than did rootstock cultivars, and a higher content of lysine compared to Buffon and Maxifort. The features modified by rootstock such are changes in leaf anatomy can affect the attractiveness of plants to B. tabaci. Thus, the grafting of tomato could constitute a valuable tool in an integrated management strategy against this aerial pest.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA