Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Oral Rehabil ; 36(2): 132-41, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18681936

RESUMEN

The aim of this study was to evaluate the properties of four heat-pressed glass-ceramic materials after repeated heat-pressing. Two commercially available heat-pressed glass-ceramic systems [Optimal pressable glass-ceramics (OPC and 3G) and Empress pressable glass-ceramics (Empress and Empress2)] were selected. Disc samples (14 mm x 1.4 mm) of each tested material were heat-pressed and used as controls. Sprue and button parts of the pressed groups were retrieved and used for repeated heat-pressing to construct specimens of re-pressed group. All the heat-pressed casting procedures were performed according to the manufacturers' instructions. A biaxial flexural strength (BFS) test (ISO 6872) was performed to determine the strength of pressed and re-pressed glass-ceramic disc specimens (n = 10) at a crosshead speed of 0.5 mm min(-1). Ions eluted from etching procedure were collected and examined using inductively coupled plasma mass spectrometer. Surface characteristics were examined with electron probe microanalysis, X-ray diffraction and secondary electron imaging (SEI). The data were analysed statistically (ANOVA + Tukey's HSD post hoc test, P < 0.05). The BFS values obtained ranged from 123.5 +/- 18.5 to 365.9 +/- 35.5 MPa. The re-pressed Empress2 group had a statistically significant higher BFS mean than the pressed control group (P < 0.05). The SEI micrographs of the lithium disilicate-reinforced glass-ceramic material (Empress2) showed a densely packed, interlocking microstructure and an increase in size with preferred orientation of the lithium disilicate crystals after repeated heat-pressing. Repeated heat-pressing treatment produced a statistically significant increase in the flexural strength of Empress2 glass-ceramic material.


Asunto(s)
Cerámica , Fuerza Compresiva , Materiales Dentales , Calor , Resistencia a la Tracción , Silicatos de Aluminio , Porcelana Dental , Microanálisis por Sonda Electrónica , Compuestos de Litio , Espectrometría de Masas/métodos , Ensayo de Materiales/métodos , Propiedades de Superficie , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA