Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 41(11): 111784, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36516773

RESUMEN

Heat stress (HS) induces a cellular response leading to profound changes in gene expression. Here, we show that human YTHDC1, a reader of N6-methyladenosine (m6A) RNA modification, mostly associates to the chromatin fraction and that HS induces a redistribution of YTHDC1 across the genome, including to heat-induced heat shock protein (HSP) genes. YTHDC1 binding to m6A-modified HSP transcripts co-transcriptionally promotes expression of HSPs. In parallel, hundreds of the genes enriched in YTHDC1 during HS have their transcripts undergoing YTHDC1- and m6A-dependent intron retention. Later, YTHDC1 concentrates within nuclear stress bodies (nSBs) where it binds to m6A-modified SATIII non-coding RNAs, produced in an HSF1-dependent manner upon HS. These findings reveal that YTHDC1 plays a central role in a chromatin-associated m6A-based reprogramming of gene expression during HS. Furthermore, they support the model where the subsequent and temporary sequestration of YTHDC1 within nSBs calibrates the timing of this YTHDC1-dependent gene expression reprogramming.


Asunto(s)
Cromatina , Respuesta al Choque Térmico , Humanos , Respuesta al Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Expresión Génica , Factores de Empalme de ARN/metabolismo , Proteínas del Tejido Nervioso/metabolismo
2.
Genes (Basel) ; 13(4)2022 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-35456403

RESUMEN

In eukaryotes, the heat shock response is orchestrated by a transcription factor named Heat Shock Factor 1 (HSF1). HSF1 is mostly characterized for its role in activating the expression of a repertoire of protein-coding genes, including the heat shock protein (HSP) genes. Remarkably, a growing set of reports indicate that, upon heat shock, HSF1 also targets various non-coding regions of the genome. Focusing primarily on mammals, this review aims at reporting the identity of the non-coding genomic sites directly bound by HSF1, and at describing the molecular function of the long non-coding RNAs (lncRNAs) produced in response to HSF1 binding. The described non-coding genomic targets of HSF1 are pericentric Satellite DNA repeats, (sub)telomeric DNA repeats, Short Interspersed Nuclear Element (SINE) repeats, transcriptionally active enhancers and the NEAT1 gene. This diverse set of non-coding genomic sites, which already appears to be an integral part of the cellular response to stress, may only represent the first of many. Thus, the study of the evolutionary conserved heat stress response has the potential to emerge as a powerful cellular context to study lncRNAs, produced from repeated or unique DNA regions, with a regulatory function that is often well-documented but a mode of action that remains largely unknown.


Asunto(s)
ARN Largo no Codificante , Animales , ADN , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Respuesta al Choque Térmico/genética , Mamíferos/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores de Transcripción/metabolismo
3.
Chromosoma ; 130(1): 53-60, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33547955

RESUMEN

The heat shock factor 1 (HSF1)-dependent transcriptional activation of human pericentric heterochromatin in heat-shocked cells is the most striking example of transcriptional activation of heterochromatin. Until now, pericentric heterochromatin of chromosome 9 has been identified as the primary target of HSF1, in both normal and tumor heat-shocked cells. Transcriptional awakening of this large genomic region results in the nuclear accumulation of satellite III (SATIII) noncoding RNAs (ncRNAs) and the formation in cis of specific structures known as nuclear stress bodies (nSBs). Here, we show that, in four different male cell lines, including primary human fibroblasts and amniocytes, pericentric heterochromatin of chromosome Y can also serve as a unique primary site of HSF1-dependent heterochromatin transcriptional activation, production of SATIII ncRNA, and nucleation of nuclear stress bodies (nSBs) upon heat shock. Our observation suggests that the chromosomal origin of SATIII transcripts in cells submitted to heat shock is not a determinant factor as such, but that transcription of SATIII repetitive units or the SATIII ncRNA molecules is the critical element of HSF1-dependent transcription activation of constitutive heterochromatin.


Asunto(s)
Cromosomas Humanos Y/genética , ADN Satélite/genética , Fibroblastos/metabolismo , Factores de Transcripción del Choque Térmico/metabolismo , Heterocromatina/genética , Factores de Empalme Serina-Arginina/metabolismo , Estrés Fisiológico , Femenino , Fibroblastos/citología , Factores de Transcripción del Choque Térmico/genética , Respuesta al Choque Térmico , Humanos , Masculino , Factores de Empalme Serina-Arginina/genética , Transcripción Genética
4.
Sci Rep ; 7(1): 5418, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28710461

RESUMEN

The heat shock response is characterized by the transcriptional activation of both hsp genes and noncoding and repeated satellite III DNA sequences located at pericentric heterochromatin. Both events are under the control of Heat Shock Factor I (HSF1). Here we show that under heat shock, HSF1 recruits major cellular acetyltransferases, GCN5, TIP60 and p300 to pericentric heterochromatin leading to a targeted hyperacetylation of pericentric chromatin. Redistribution of histone acetylation toward pericentric region in turn directs the recruitment of Bromodomain and Extra-Terminal (BET) proteins BRD2, BRD3, BRD4, which are required for satellite III transcription by RNAP II. Altogether we uncover here a critical role for HSF1 in stressed cells relying on the restricted use of histone acetylation signaling over pericentric heterochromatin (HC).


Asunto(s)
Respuesta al Choque Térmico , Heterocromatina/genética , Transducción de Señal/genética , Activación Transcripcional , Animales , Células COS , Proteínas de Ciclo Celular , Chlorocebus aethiops , Células HeLa , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Heterocromatina/metabolismo , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Polimerasa II/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Nucleic Acids Res ; 45(11): 6321-6333, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28369628

RESUMEN

In response to metabolic or environmental stress, cells activate powerful defense mechanisms to prevent the formation and accumulation of toxic protein aggregates. The main orchestrator of this cellular response is HSF1 (heat shock factor 1), a transcription factor involved in the up-regulation of protein-coding genes with protective roles. It has become very clear that HSF1 has a broader function than initially expected. Indeed, our previous work demonstrated that, upon stress, HSF1 activates the transcription of a non-coding RNA, named Satellite III, at pericentromeric heterochromatin. Here, we observe that the function of HSF1 extends to telomeres and identify subtelomeric DNA as a new genomic target of HSF1. We show that the binding of HSF1 to subtelomeric regions plays an essential role in the upregulation of non-coding TElomeric Repeat containing RNA (TERRA) transcription upon heat shock. Importantly, our data show that telomere integrity is impacted by heat shock and that telomeric DNA damages are markedly enhanced in HSF1 deficient cells. Altogether, our findings reveal a new direct and essential function of HSF1 in the transcriptional activation of TERRA and in telomere protection upon stress.


Asunto(s)
Factores de Transcripción del Choque Térmico/fisiología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Telómero/metabolismo , Células HeLa , Respuesta al Choque Térmico , Humanos , Estabilidad del ARN , Homeostasis del Telómero , Transcripción Genética , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA