Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(31): 14525-14538, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39037441

RESUMEN

A variety of different ground-state structures of carbene and phosphine groups 1 and 2 cationic, group 11 cationic, and group 10 neutral complexes were studied using density functional theory (DFT) and correlated molecular orbital theory (CCSD(T)) methods. Geometries of complexes with phosphines were studied and compared to available experimental data. Among the three analyzed phosphine ligands, PH3, PMe3, and PPh3, PH3 was found to have noticeably smaller ligand binding energies (LBEs, ΔH298 K). PPh3 has the greatest LBEs with group 2 dications. The difference in LBEs for PMe3 and PPh3 in complexes with group 1 monocations and transition-metal (TM) complexes was significantly less pronounced. The stability and reactivity of phosphine complexes were analyzed and compared with those of previously studied N-heterocyclic carbenes (NHC). PH3 has smaller LBEs compared to NHC carbenes. The lower LBEs correlate with the hardness for M(11)+ complexes and correlate with both the hardness and ionic radii for the M(1)+ and M(2)2+ complexes. The presence of additional PH3 substituents on the metal center makes the LBE smaller compared to their unsubstituted or less substituted analogs. The presence of NH3 in a structure causes a smaller effect on binding, and, except for carbene-PtNH3, an increase in LBE was observed. Composite-correlated molecular orbital theory (G3MP2) was used to predict the LBE of various Lewis acidic ligands with PH3 and NHCs to contrast their binding behavior. Binding either phosphine or carbene to metal diamine complexes caused ligand exchange and transfer of NH3 to an outer coordination sphere.

2.
J Phys Chem A ; 127(47): 9985-9994, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37967283

RESUMEN

The interactions between group 1 and 11 monocations and group 2 dications with triphenylphosphine were studied by using a combination of correlated molecular orbital theory and density functional theory. Two binding modes were found: the front side (phosphorus lone pair) and back side (phenyl rings). Group 1 and 2 cations prefer binding to the π system rather than to the lone pair of the phosphorus atom, and their ligand binding energies (LBEs) correlate with the atomic ionic radii as well as the hardness of the atomic ion. Group 11 monocations prefer binding to the lone pair of the phosphorus atom, and their LBEs are correlated with the hardness of the cation but exhibit a different trend than for the groups 1 and 2 cations. The LBEs of the cations with C2H4, C6H6, and C6H5PH2 are also reported to aid in the analysis of the cation-π interactions and the influence of the PH2 substituent on the energy of this interaction. The LBEs for binding to C2H4 and C6H6 are the most complete and reliable set of values for these species.

3.
J Org Chem ; 87(19): 12632-12643, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36126149

RESUMEN

As the search for competent soft-Lewis basic complexants for separations continues to evolve toward identification of a chemoselective moiety for speciation of the minor actinides from the electronically similar lanthanides, synthetic methods must congruently evolve. Synthetic options to convergently construct unsymmetric heteroaryl donor complexants incorporating a 1,2,3-triazole from accessible starting materials for evaluation in separation assays necessitated the development of the described methodology. In this report, metal- and azide-free synthesis of diversely functionalized pyridyl-1,2,3-triazole derivatives facilitated by microwave irradiation was leveraged to prepare a novel class of tridentate ligands. The described work negates the incorporation of thermally sensitive and toxic organoazides by using N-tosylhydrazones and anilines as viable synthetic equivalents in an efficient 12 min reaction time. Adaptation to alternative synthons useful for drug discovery was also realized. Method discovery, optimization, N-tosylhydrazone and aniline substrate scope, as well as a preliminary mechanistic hypotheses supported by DFT calculations are reported herein.


Asunto(s)
Azidas , Elementos de la Serie de los Lantanoides , Compuestos de Anilina , Ciclización , Microondas , Estrés Oxidativo , Triazoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA