Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Orphanet J Rare Dis ; 19(1): 277, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39044201

RESUMEN

BACKGROUND: The history of rare diseases is largely unknown. Research on this topic has focused on individual cases of prominent (historical) individuals and artistic (e.g., iconographic) representations. Medical collections include large numbers of specimens that exhibit signs of rare diseases, but most of them date to relatively recent periods. However, cases of rare diseases detected in mummies and skeletal remains derived from archaeological excavations have also been recorded. Nevertheless, this direct evidence from historical and archaeological contexts is mainly absent from academic discourse and generally not consulted in medical research on rare diseases. RESULTS: This desideratum is addressed by the Digital Atlas of Ancient Rare Diseases (DAARD: https://daard.dainst.org ), which is an open access/open data database and web-based mapping tool that collects evidence of different rare diseases found in skeletons and mummies globally and throughout all historic and prehistoric time periods. This easily searchable database allows queries by diagnosis, the preservation level of human remains, research methodology, place of curation and publications. In this manuscript, the design and functionality of the DAARD are illustrated using examples of achondroplasia and other types of stunted growth. CONCLUSIONS: As an open, collaborative repository for collecting, mapping and querying well-structured medical data on individuals from ancient times, the DAARD opens new avenues of research. Over time, the number of rare diseases will increase through the addition of new cases from varied backgrounds such as museum collections and archaeological excavations. Depending on the research question, phenotypic or genetic information can be retrieved, as well as information on the general occurrence of a rare disease in selected space-time intervals. Furthermore, for individuals diagnosed with a rare disease, this approach can help them to build identity and reveal an aspect of their condition they might not have been aware of. Thus, the DAARD contributes to the understanding of rare diseases from a long-term perspective and adds to the latest medical research.


Asunto(s)
Enfermedades Raras , Humanos , Enfermedades Raras/historia , Momias
2.
PNAS Nexus ; 2(2): pgac313, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36845350

RESUMEN

The construction of ancient road networks spanned generations and exhibits temporal path dependence that is not fully captured by established network formation models that are used to support archaeological reasoning. We introduce an evolutionary model that captures explicitly the sequential nature of road network formation: A central feature is that connections are added successively and according to an optimal cost-benefit trade-off with respect to existing connections. In this model, the network topology emerges rapidly from early decisions, a trait that makes it possible to identify plausible road construction orders in practice. Based on this observation we develop a method to compress the search space of path-dependent optimization problems. We use this method to show that the model's assumptions on ancient decision-making allow the reconstruction of partially known road networks from the Roman era in good detail and from sparse archaeological evidence. In particular, we identify missing links in the major road network of ancient Sardinia that are in good agreement with expert predictions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA