Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell ; 106(2): 219-32, 2001 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-11511349

RESUMEN

Vertebrate segmentation requires a molecular oscillator, the segmentation clock, acting in presomitic mesoderm (PSM) cells to set the pace at which segmental boundaries are laid down. However, the signals that position each boundary remain unclear. Here, we report that FGF8 which is expressed in the posterior PSM, generates a moving wavefront at which level both segment boundary position and axial identity become determined. Furthermore, by manipulating boundary position in the chick embryo, we show that Hox gene expression is maintained in the appropriately numbered somite rather than at an absolute axial position. These results implicate FGF8 in ensuring tight coordination of the segmentation process and spatiotemporal Hox gene activation.


Asunto(s)
Proteínas Aviares , Relojes Biológicos/fisiología , Factores de Crecimiento de Fibroblastos/fisiología , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox/genética , Transducción de Señal , Somitos/citología , Somitos/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Recuento de Células , Tamaño de la Célula , Embrión de Pollo/citología , Embrión de Pollo/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Fetales/metabolismo , Factor 8 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Factores de Crecimiento de Fibroblastos/genética , Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Hibridación in Situ , Microesferas , Modelos Biológicos , Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Dominio T Box/metabolismo , Activación Transcripcional
2.
Development ; 128(1): 107-16, 2001 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11092816

RESUMEN

During Drosophila myogenesis, Notch signalling acts at multiple steps of the muscle differentiation process. In vertebrates, Notch activation has been shown to block MyoD activation and muscle differentiation in vitro, suggesting that this pathway may act to maintain the cells in an undifferentiated proliferative state. In this paper, we address the role of Notch signalling in vivo during chick myogenesis. We first demonstrate that the Notch1 receptor is expressed in postmitotic cells of the myotome and that the Notch ligands Delta1 and Serrate2 are detected in subsets of differentiating myogenic cells and are thus in position to signal to Notch1 during myogenic differentiation. We also reinvestigate the expression of MyoD and Myf5 during avian myogenesis, and observe that Myf5 is expressed earlier than MyoD, consistent with previous results in the mouse. We then show that forced expression of the Notch ligand, Delta1, during early myogenesis, using a retroviral system, has no effect on the expression of the early myogenic markers Pax3 and Myf5, but causes strong down-regulation of MyoD in infected somites. Although Delta1 overexpression results in the complete lack of differentiated muscles, detailed examination of the infected embryos shows that initial formation of a myotome is not prevented, indicating that exit from the cell cycle has not been blocked. These results suggest that Notch signalling acts in postmitotic myogenic cells to control a critical step of muscle differentiation.


Asunto(s)
Drosophila/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de la Membrana/fisiología , Músculos/fisiología , Proteína MioD/fisiología , Animales , Drosophila/embriología , Proteínas de Drosophila , Ratones , Músculos/embriología , Receptores Notch , Transducción de Señal/genética
3.
Int Rev Cytol ; 198: 1-65, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-10804460

RESUMEN

As a consequence of their segmented arrangement and the diversity of their tissue derivatives, somites are key elements in the establishment of the metameric body plan in vertebrates. This article aims to largely review what is known about somite development, from the initial stages of somite formation through the process of somite regionalization along the three major body axes. The role of both cell intrinsic mechanisms and environmental cues are evaluated. The periodic and bilaterally synchronous nature of somite formation is proposed to rely on the existence of a developmental clock. Molecular mechanisms underlying these events are reported. The importance of an antero-posterior somitic polarity with respect to somite formation on one hand and body segmentation on the other hand is discussed. Finally, the mechanisms leading to the regionalization of somites along the dorso-ventral and medio-lateral axes are reviewed. This somitic compartmentalization is believed to underlie the segregation of dermis, skeleton, and dorsal and appendicular musculature.


Asunto(s)
Tipificación del Cuerpo/fisiología , Somitos/fisiología , Animales , Aves , Somitos/citología
4.
Dev Genet ; 23(1): 77-85, 1998.
Artículo en Inglés | MEDLINE | ID: mdl-9706696

RESUMEN

Little is known about the tissue interactions and the molecular signals implicated in the sequence of events leading to the subdivision of the somite into its rostral and caudal compartments. It has been demonstrated that rostrocaudal identity of the sclerotome is acquired at the presomitic (PSM) level. However, it is not known whether this compartment specification is fully determined in the PSM or whether it is dependent upon maintenance cues from the surrounding environment, as is the case for somite epithelialization. In this report, we address this issue by examining the expression profiles of C-Delta-1 and C-Notch-1, the avian homologues of mouse Delta-like1 (Delta1) and Notch1 which have been implicated in the specification of the somite rostrocaudal polarity in mouse. In chick, these genes are expressed in distinct but partially overlapping domains in the PSM and subsequently in the caudal regions of the somites. We have used an in vitro assay that consists of culturina PSM explants to examine the regulation of these genes in this tissue. We find that PSM explants cultured without overlying ectoderm continue to lay down stripes of C-Delta-1 expression, although epithelialization is blocked. These results suggest that somite rostrocaudal patterning is an autonomous property of the PSM. In addition, they demonstrate that segmentation is not necessarily coupled with the formation of somites.


Asunto(s)
Proteínas Aviares , Tipificación del Cuerpo/genética , Mesodermo/citología , Receptores de Superficie Celular , Somitos/citología , Factores de Transcripción , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Embrión de Pollo , Ectodermo/citología , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Técnicas In Vitro , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/genética , Ratones , Proteínas/genética , Receptor Notch1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA