Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 8(4): e09285, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35497035

RESUMEN

The combustion of pure H2 in engines is still troublesome, needing further research and development. Using H2 and diesel in a dual-fuel compression ignition engine appears as a more feasible approach. Here we report an experimental assessment of performance and emissions for a single-cylinder, four-stroke, air-cooled compression ignition engine operating with neat diesel and H2-diesel dual-fuel. Previous studies typically show the performance and emissions for a specific operation condition (i.e. a fixed engine speed and torque) or a limited operating range. Our experiments covered engine speeds of 3000 and 3600 rpm and torque levels of 3 and 7 Nm. An in-house designed and built alkaline cell generated the H2 used for the partial substitution of diesel. Compared with neat diesel, the results indicate that adding H2 decreased the air-fuel equivalence ratio and the Brake Specific Diesel Fuel Consumption Efficiency by around 14-29 % and 4-31 %. In contrast, adding H2 increased the Brake Fuel Conversion Efficiency by around 3-36 %. In addition, the Brake Thermal Efficiency increased in the presence of H2 in the range of 3-37 % for the lower engine speed and 27-43 % for the higher engine speed compared with neat diesel. The dual-fuel mode resulted in lower CO and CO2 emissions for the same power output. The emissions of hydrocarbons decreased with H2 addition, except for the lower engine speed and the higher torque. However, the dual-fuel operation resulted in higher NOx emissions than neat diesel, with 2-6 % and 19-48 % increments for the lower and higher engine speeds. H2 emerges as a versatile energy carrier with the potential to tackle current energy and emissions challenges; however, the dual-fuel strategy requires careful management of NOx emissions.

2.
Heliyon ; 7(11): e08273, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34765787

RESUMEN

Improving the thermal efficiency of internal combustion engines is essential to reduce the operating costs and complaints with the increasing environmental requirements. Thermoelectric generators came up as an opportunity to reuse part of the heat loss with the exhausts. This paper evaluates the performance of a thermoelectric generator to improve the efficiency of a stationary diesel engine under different rotational speeds and torques. The data was obtained through CFD simulations and validated with experiments. The proposed solution uses a cooling system to control the temperature of the thermoelectric modules. The results show that the torque and the rotational speed of the engine are the most significant performance parameters of the thermoelectric generator, while the influence of the cooling water temperature has a minor but still significant influence. Additionally, the results show a change from 1.3% to 6.2% in the thermoelectric generator efficiency, while the exergy efficiency varies between 1.8% and 7.9%. The exergy balance indicates that most of the exergy is loss because of the irreversibilities in the thermoelectric generator and of the exergy loss with the exhausts. The exergy loss can be reduced by optimizing the design of the heat exchanger. Since the thermoelectric generator improved the engine efficiency by a marginal 0.2%-0.8%. Therefore, it is important to further research how to improve the design of heat exchangers for thermoelectric generators to increase their energy conversion efficiency and their impact on the energy efficiency of internal combustion engines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA