RESUMEN
Conservationists often have difficulty obtaining financial and social support for protected areas that do not demonstrate their benefits for society. Therefore, ecosystem services have gained importance in conservation science in the last decade, as these services provide further justification for appropriate management and conservation of natural systems. We used InVEST software and a set of GIS procedures to quantify, spatialize and evaluated the overlap between ecosystem services-carbon stock and sediment retention-and a biodiversity proxy-habitat quality. In addition, we proposed a method that serves as an initial approach of a priority areas selection process. The method considers the synergism between ecosystem services and biodiversity conservation. Our study region is the Iron Quadrangle, an important Brazilian mining province and a conservation priority area located in the interface of two biodiversity hotspots, the Cerrado and Atlantic Forest biomes. The resultant priority area for the maintenance of the highest values of ecosystem services and habitat quality was about 13% of the study area. Among those priority areas, 30% are already within established strictly protected areas, and 12% are in sustainable use protected areas. Following the transparent and highly replicable method we proposed in this study, conservation planners can better determine which areas fulfill multiple goals and can locate the trade-offs in the landscape. We also gave a step towards the improvement of the habitat quality model with a topography parameter. In areas of very rugged topography, we have to consider geomorfometric barriers for anthropogenic impacts and for species movement and we must think beyond the linear distances. Moreover, we used a model that considers the tree mortality caused by edge effects in the estimation of carbon stock. We found low spatial congruence among the modeled services, mostly because of the pattern of sediment retention distribution.
Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Animales , Biodiversidad , Brasil , Modelos TeóricosRESUMEN
The yellow-breasted capuchin monkey (Sapajus xanthosternos) is one of the seven Brazilian primates that are currently threatened with extinction. Although the species is known to be threatened by habitat loss, hunting, and illegal pet trade, few data exist on how these threats influence its long-term population persistence. We conducted population viability analyses (PVAs) to estimate minimum viable populations of S. xanthosternos under 10 threat scenarios (i.e., varying hunting pressure and varying number of infants captured for the pet trade) for five forest fragments with different estimated carrying capacities (K). We also estimated the minimum forest fragment size required to sustain viable populations living under the same 10 threat scenarios, based on critical numbers of K obtained in sensitivity tests, below which the population would be unviable. Our PVAs suggests that hunting has a higher impact on population viability in comparison to threats from the pet trade. Annual losses of adult and young females from hunting had the most detrimental effect on population persistence under all forest fragment sizes. Such hunting pressure is not sustainable for populations living in areas ≤3,460 ha, since these areas may not support populations of ≥84 individuals. The seven largest of the 13 protected areas currently harboring capuchins should be effective at maintaining viable populations in the long term even under the greatest threat scenarios we modeled. Other large forest patches, mainly in the western part of the species distribution, are recommended as priority areas for protection to increase the chances of capuchins' survival for the long term. In addition, forest fragments of ≤782.8 ha cannot maintain viable populations, even when there are no threats from hunting or from captures for the pet trade. Increased law enforcement is necessary to prevent the hunting and capture of capuchins, especially within larger forest fragments. Am. J. Primatol. 78:950-960, 2016. © 2016 Wiley Periodicals, Inc.