Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Small ; 19(48): e2303631, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37403282

RESUMEN

Metal oxide gas sensors have long faced the challenge of low response and poor selectivity, especially at room temperature (RT). Herein, a synergistic effect of electron scattering and space charge transfer is proposed to comprehensively improve gas sensing performance of n-type metal oxides toward oxidizing NO2 (electron acceptor) at RT. To this end, the porous SnO2 nanoparticles (NPs) assembled from grains of about 4 nm with rich oxygen vacancies are developed through an acetylacetone-assisted solvent evaporation approach combined with precise N2 and air calcinations. The results show that the as-fabricated porous SnO2 NPs sensor exhibits an unprecedented NO2 -sensing performance, including outstanding response (Rg /Ra  = 772.33 @ 5 ppm), fast recovery (<2 s), an extremely low detection limit (10 ppb), and exceptional selectivity (response ratio >30) at RT. Theoretical calculation and experimental tests confirm that the excellent NO2 sensing performance is mainly attributed to the unique synergistic effect of electron scattering and space charge transfer. This work proposes a useful strategy for developing high-performance RT NO2 sensors using metal oxides, and provides an in-depth understanding for the basic characteristics of the synergistic effect on gas sensing, paving the way for efficient and low power consumption gas detection at RT.

2.
Artículo en Inglés | MEDLINE | ID: mdl-35652577

RESUMEN

Hydrogen sulfide (H2S) sensors are in urgent demand in the field of hermetic environment detection and metabolic disease diagnosis. However, most of the reported room-temperature (RT) H2S sensors based on transition metal oxides/salts unavoidably suffer from the poisoning effect, resulting in the unrecoverable behavior to restrain their application. Herein, copper(II) chloride-doped polyaniline emeraldine salt (PANI-CuCl2) was devised for RT-recoverable H2S detection, where the copper ion (Cu2+) was designed as a partial substitution of protons (H+) in PANI. The prepared gas sensor exhibited full recovery capability toward 0.25-10 ppm H2S, good repeatability, and long-term stability under 80% RH. Meanwhile, the changes of the PANI-CuCl2 during the H2S sensing period were analyzed via multiple analytical methods to reveal the reversible sensing behavior. Results showed that doping of Cu2+ not only promoted the PANI's response through the formation of conductive copper sulfide (CuS) and following H+ redoping in the PANI but also facilitated the sensor's recovery behavior because of the Cu2+ regeneration under the H+/oxygen environment. This work not only proves the changes of the interaction between the PANI and Cu2+ during the H2S sensing period but also sheds light on designing recoverable H2S sensors based on transition metal salts.

3.
J Hazard Mater ; 434: 128836, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35421674

RESUMEN

Nitrogen dioxide (NO2) is one of the most hazardous toxic pollutants to human health and the environment. However, deficiencies of low sensitivity and poor selectivity at room temperature (RT) restrain the application of NO2 sensors. Herein, the edge-enriched MoS2 nanosheets modified porous nanosheets-assembled three-dimensional (3D) In2O3 microflowers have been synthesized to improve the sensitivity and selectivity of NO2 detection at RT. The results show that the In2O3/MoS2 composite sensor exhibits a response as high as 343.09-5 ppm NO2, which is 309 and 72.5 times higher than the sensors based on the pristine MoS2 and In2O3. The composite sensor also shows short recovery time (37 s), excellent repeatability and long-term stability. Furthermore, the response of the In2O3/MoS2 sensor to NO2 is at least 30 times higher than that of other gases, proving the ultrahigh selectivity of the sensor. The outstanding sensing performance of the In2O3/MoS2 sensor can be attributed to the synergistic effect and abundant active sites originating from the p-n heterojunction, exposed edge structures and the designed 2D/3D hybrid structure. The strategy proposed herein is expected to provide a useful reference for the development of high-performance RT NO2 sensors.


Asunto(s)
Molibdeno , Dióxido de Nitrógeno , Gases , Humanos , Molibdeno/química , Porosidad , Temperatura
4.
ACS Appl Mater Interfaces ; 14(5): 7301-7310, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35076218

RESUMEN

The high moisture level of exhaled gases unavoidably limits the sensitivity of breath analysis via wearable bioelectronics. Inspired by pulmonary lobe expansion/contraction observed during respiration, a respiration-driven triboelectric sensor (RTS) was devised for simultaneous respiratory biomechanical monitoring and exhaled acetone concentration analysis. A tin oxide-doped polyethyleneimine membrane was devised to play a dual role as both a triboelectric layer and an acetone sensing material. The prepared RTS exhibited excellent ability in measuring respiratory flow rate (2-8 L/min) and breath frequency (0.33-0.8 Hz). Furthermore, the RTS presented good performance in biochemical acetone sensing (2-10 ppm range at high moisture levels), which was validated via finite element analysis. This work has led to the development of a novel real-time active respiratory monitoring system and strengthened triboelectric-chemisorption coupling sensing mechanism.


Asunto(s)
Acetona/análisis , Pruebas Respiratorias/métodos , Frecuencia Respiratoria/fisiología , Pruebas Respiratorias/instrumentación , Electrónica , Humanos , Nanoestructuras/química , Polietileneimina/química , Reproducibilidad de los Resultados , Compuestos de Estaño/química , Dispositivos Electrónicos Vestibles
5.
ACS Sens ; 6(8): 2858-2867, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34185511

RESUMEN

Titanium carbide (Ti3C2Tx) with a distinctive structure, abundant surface chemical groups, and good electrical conductivity has shown great potential in fabricating superior gas sensors, but several challenges, such as low response kinetics, poor reversibility, and serious baseline drift, still remain. In this work, γ-poly(l-glutamic acid) (γ-PGA) with a blocking effect is exploited to modify Ti3C2Tx, thereby stimulating the positive response behavior of Ti3C2Tx and improving its gas sensing performance. On account of the unique synergetic interaction between Ti3C2Tx and γ-PGA, the response of the flexible Ti3C2Tx/γ-PGA gas sensor to 50 ppm NO2has been improved to a large extent (average 1127.3%), which is 85 times that of Ti3C2Tx (only 13.2%). Moreover, the as-fabricated Ti3C2Tx/γ-PGA sensor not only exhibits a shorter response/recovery time (average 43.4/3 s) compared with the Ti3C2Tx-based sensor (∼18.5/18.3 min) but also shows good reversibility and repeatability (relative standard deviation (RSD) <1%) at room temperature within 50% relative humidity (RH). The improved gas sensing properties of the Ti3C2Tx/γ-PGA sensor can be attributed to the enhancement of effective adsorption and the blocking effect assisted by water molecules. Furthermore, the gas sensing response of the Ti3C2Tx/γ-PGA sensor is studied at different RHs, and humidity compensation of the sensor is carried out using the multiple regression method. This work demonstrates a novel strategy to enhance the gas sensing properties of Ti3C2Tx by γ-PGA modification and provides a new way to realize highly responsive gas detection at room temperature.


Asunto(s)
Ácido Glutámico , Titanio , Adsorción , Humedad , Dióxido de Nitrógeno
6.
ACS Appl Mater Interfaces ; 12(28): 31037-31053, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32584534

RESUMEN

Paper, as a flexible, low-cost, lightweight, tailorable, environmental-friendly, degradable, and renewable material, is emerging in electronic devices. Especially, many kinds of paper-based (PB) sensors have been reported for wearable applications in recent years. Among them, the PB gas, humidity, and strain sensors are widely studied for monitoring gas, humidity, and strain from the human body and the environment. However, gas, humidity, and strain often coexist and interact, and the paper itself is hydrophilic and flexible, resulting in that it is still challenging to develop high-performance PB sensors specialized for gas, humidity, and strain detections. Therefore, it is necessary to summarize and discuss them systematically. In this review, we focus on summarizing the state-of-art studies of the PB gas, humidity, and strain sensors. Specifically, the fabrications (electrodes and sensing materials) and applications of PB gas, humidity, and strain sensors are summarized and discussed. The current challenges and the potential trends of PB sensors for gas, humidity, and strain detections are also outlined. This review not only can help readers to understand the development status of the PB gas, humidity, and strain sensors but also is helpful for readers to find out and solve the problems in this field through comparative reading.

7.
Nanotechnology ; 31(35): 355501, 2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32408279

RESUMEN

Much effort has focussed on enhancing the humidity-sensing performances of humidity sensors, but their fabrication using facile and low-cost methods is also desirable. In this work, a humidity sensor based on a naturally available nanomaterial, sepiolite nanofibers (SNFs), was facilely fabricated without any expensive raw materials or complex processes. Characterization results show that SNFs have a natural slender nanofiber structure (diameter 20-50 nm) and abundant hydrophilic functional groups (-OH). The results of humidity-sensing tests show that the SNF humidity sensor has outstanding humidity-sensing properties (i.e. large response, good linearity and repeatability) within the relative humidity range from 10.9% to 91.5% at room temperature (25 °C). This work presents a moderate and cost-effective strategy for the fabrication of high-performance humidity sensors using the natural SNF nanomaterial.

8.
Langmuir ; 36(12): 3029-3037, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32176511

RESUMEN

One key limitation of artificial skin-like materials is the shortened service life caused by mechanical damages during practical applications. The ability to self-heal can effectively extend the material service life, reduce the maintenance cost, and ensure safety. Therefore, it is important and necessary to fabricate materials with simultaneously mechanical and electrical self-healing behavior in a facile and convenient way. Herein, we report a stretchable and conductive self-healing elastomer based on intermolecular networks between poly(acrylic acid) (PAA) and reduced graphene oxide (rGO) through a facile and convenient postreduction and one-pot method. The introduction of rGO provides the PAA-GO elastomers with good mechanical stability and electrical properties. Moreover, this material exhibited both electrical and mechanical self-healing properties. After cutting, the elastomers self-healed quickly (∼30 s) and efficiently (∼95%) at room temperature. The elastomers were accurate and reliable in detecting external strain even after healing. The elastomers were further applied for strain sensors, which were attached directly to human skin to monitor external movements, including finger bending and wrist twisting.

9.
ACS Appl Mater Interfaces ; 11(24): 21840-21849, 2019 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-31135126

RESUMEN

Developing a facile, cost-saving, and environment-friendly method for fabricating a multifunctional humidity sensor is of great significance to expand its practical applications. However, most humidity sensors involve a complex fabrication process, resulting in their high cost and narrow application fields. Herein, a multifunctional paper-based humidity sensor with many advantages is proposed. This humidity sensor is fabricated using conventional printing paper and flexible conductive adhesive tape by a facile pasting method, in which the paper is used as both the humidity-sensing material and the substrate of the sensor. Owing to the moderate hydrophilicity of the paper and the rational structure design of the paper-based humidity sensor, the sensor exhibits an excellent humidity-sensing response of more than 103 as well as good linearity ( R2 = 0.9549) within the humidity range from 41.1 to 91.5% relative humidity. Furthermore, the paper-based humidity sensor has good flexibility and compatibility, endowing it with multifunctional applications for breath rate, baby diaper wetting, noncontact switch, skin humidity, and spatial localization monitoring. Although the resistance of the paper-based humidity sensor is relatively large, the humidity-sensing response signals of the sensor can be conveniently processed by the designed signal processing system. The readily available starting materials and facile fabrication technique provide useful strategies for the development of multifunctional humidity sensors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA