Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 11(3): e0505022, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37125939

RESUMEN

Staphylococcus aureus often leads to severe skin infections. However, S. aureus is facing a crisis of antibiotic resistance. The combination of phage and antibiotics is effective for drug-resistant S. aureus infections. Therefore, it is worth exploiting novel antibacterial agents to cooperate with antibiotics against S. aureus infections. Herein, a novel chimeric lysin ClyQ was constructed, which was composed of a cysteine- and histidine-dependent amidohydrolase/peptidase (CHAP) catalytic domain from S. aureus phage lysin LysGH15 and cell wall-binding domain (CBD) from Enterococcus faecalis phage lysin PlyV12. ClyQ had an exceptionally broad host range targeting streptococci, staphylococci, E. faecalis, and E. rhusiopathiae. ClyQ combined with mupirocin (2.64 log reduction) was more effective at treating S. aureus skin infections than ClyQ (0.46 log reduction) and mupirocin (2.23 log reduction) alone. Of equal importance, none of S. aureus ATCC 29213 or S3 exposed to ClyQ developed resistance, and the combination of ClyQ and mupirocin delayed the development of mupirocin resistance. Collectively, chimeric lysin ClyQ enriches the reservoirs for treating S. aureus infections. Our findings may provide a way to alleviate the current antibiotic resistance crisis. IMPORTANCE Staphylococcus aureus, as an Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species (ESKAPE) pathogen, can escape the elimination of existing antibiotics. At present, phages and phage lysins against S. aureus infections are considered alternative antibacterial agents. However, the development of broad-spectrum chimeric phage lysins to cooperate with antibiotics against S. aureus infections remains at its initial stage. In this study, we found that the broad-host-range chimeric lysin ClyQ can synergize with mupirocin to treat S. aureus skin infections. Furthermore, the development of S. aureus resistance to mupirocin is delayed by the combination of ClyQ and mupirocin in vitro. Our results bring research attention toward the development of chimeric lysin that cooperates with antibiotics to overcome bacterial infections.


Asunto(s)
Bacteriófagos , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Mupirocina/farmacología , Mupirocina/uso terapéutico , Staphylococcus aureus , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
2.
Int J Food Microbiol ; 398: 110223, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37120944

RESUMEN

Salmonella is a food-borne zoonotic pathogen that threatens food safety and public health security. Temperate phages can influence bacterial virulence and phenotype and play an important role in bacterial evolution. However, most studies on Salmonella temperate phages focus on prophage induced by bacteria, with few reports on Salmonella temperate phages isolated in the environment. Moreover, whether temperate phages drive bacterial virulence and biofilm formation in food and animal models remains unknown. In this study, Salmonella temperate phage vB_Sal_PHB48 was isolated from sewage. TEM and phylogenetic analysis indicated that phage PHB48 belongs to the Myoviridae family. Additionally, Salmonella Typhimurium integrating PHB48 was screened and designated as Sal013+. Whole genome sequencing revealed that the integration site was specific and we confirmed that the integration of PHB48 did not change the O-antigen and coding sequences of Sal013. Our in vitro and in vivo studies showed that the integration of PHB48 could significantly enhance the virulence and biofilm formation of S. Typhimurium. More importantly, the integration of PHB48 significantly improved the colonization and contamination ability of bacteria in food samples. In conclusion, we isolated Salmonella temperate phage directly from the environment and systematically clarified that PHB48 enhanced the virulence and biofilm-forming ability of Salmonella. In addition, we found that PHB48 increased the colonization and contamination ability of Salmonella in food samples. These results indicated that the highly pathogenic Salmonella induced by temperate phage was more harmful to food matrices and public health security. Our results could enhance the understanding of the evolutionary relationship between bacteriophages and bacteria, and raise public awareness of large-scale outbreaks resulting from Salmonella virulence enhancement in food industry.


Asunto(s)
Bacteriófagos , Fagos de Salmonella , Animales , Salmonella typhimurium/genética , Virulencia , Filogenia , Fagos de Salmonella/genética , Biopelículas
3.
J Antimicrob Chemother ; 78(3): 747-756, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36659862

RESUMEN

OBJECTIVES: The genus Streptococcus contains species of important zoonotic pathogens such as those that cause bovine mastitis. Unfortunately, many Streptococcus species have developed antibiotic resistance. Phage lysins are considered promising alternatives to antibiotics because it is difficult for bacteria to develop lysin resistance. However, there remains a lack of phage lysin resources for the treatment of streptococci-induced mastitis. METHODS: We identified the prophage lysin Lys0859 from the genome of the Streptococcus suis SS0859 strain. Lys0859 was subsequently characterized to determine its host range, MIC, bactericidal activity in milk, and ability to clear biofilms in vitro. Finally, to determine the effects of Lys0859 on the treatment of both bovine mastitis and S. suis infection in vivo, we established models of Streptococcus agalactiae ATCC 13813-induced mastitis and S. suis serotype 2 SC19 systemic infection. RESULTS: Our results demonstrate that Lys0859 possesses broad-spectrum lytic activity against Streptococcus and Staphylococcus species isolated from animals with bovine mastitis and 15 serotypes of S. suis isolated from swine. Intramammary and intramuscular injection of Lys0859 reduced the number of bacteria in mammary tissue by 3.75 and 1.45 logs compared with the PBS group, respectively. Furthermore, 100 µg/mouse of Lys0859 administered intraperitoneally at 1 h post-infection protected 83.3% (5/6) of mice from a lethal dose of S. suis infection. CONCLUSIONS: Overall, our results enhance the understanding and development of new strategies to combat both streptococci-induced mastitis and S. suis infection.


Asunto(s)
Bacteriófagos , Mastitis Bovina , Infecciones Estreptocócicas , Fagos de Streptococcus , Streptococcus suis , Femenino , Bovinos , Animales , Porcinos , Ratones , Humanos , Profagos/genética , Mastitis Bovina/tratamiento farmacológico , Antibacterianos/farmacología , Infecciones Estreptocócicas/microbiología
4.
Infect Drug Resist ; 15: 2689-2702, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35655790

RESUMEN

Background: Methicillin-resistant Staphylococcus aureus (MRSA) is an important zoonotic pathogen worldwide. Infections due to MRSA are associated with higher mortality rates compared with methicillin-susceptible S. aureus. Meanwhile, bacteriophages have been shown to overcome the emergence of MRSA. Methods: Phage PHB22a, PHB25a, PHB38a, and PHB40a were isolated. Here, we evaluated the ability of a phage cocktail containing phages PHB22a, PHB25a, PHB38a, and PHB40a against MRSA S-18 strain in vivo and in vitro. Phage whole-genome sequencing, host-range determination, lytic activity, and biofilm clearance experiments were performed in vitro. Galleria mellonella larvae and a mouse systemic infection model to evaluate the efficacy of phage therapy in vivo. Results: The phage cocktail exhibited enhanced antibacterial and anti-biofilm effects compared to the single phage. Phage cocktail contained with Ca2+/Zn2+ significantly reduced the number of viable bacteria (24-h or 48-h biofilm) by more than 0.81-log compared to the phage cocktail alone. Furthermore, we demonstrated that the addition of Ca2+ and Zn2+ phage cocktail could increase the survival rate of G. mellonella larvae infected with S. aureus by 10% compared with phage cocktail alone. This was further confirmed in the mouse model, which showed a 2.64-log reduction of host bacteria S-18, when Ca2+ and Zn2+ were included in the cocktail compared with the phage cocktail alone. Conclusion: Our results indicated that phage cocktail supplemented with Ca2+/Zn2+ could effectively remove bacteria in biofilms and mice tissues infected with S. aureus.

5.
Sci Total Environ ; 744: 140833, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-32717469

RESUMEN

Disinfection is an indispensable process to inactivate pathogens, while unexpected disinfection by-products (DBPs) would also be formed between the reaction of residual disinfectants and microorganisms in the water distribution system (WDS). However, there are few studies referring to the formation of DBPs and DBPs-associated toxicity under various disinfection methods based on microorganisms in the real WDS. In addition, the main contributors of bacterial communities or components that generate DBPs are unclear. In this study, the formation of trihalomethanes (THMs), halo-acetic acids (HAAs), nitrosamines (NAs) from culturable microorganisms in pipeline network by ozonation(O3), chlorination (Cl2), chloramination (NH2Cl) and joint disinfection methods were compared, meanwhile, their calculated toxicities under different oxidation scenarios were also discussed. Moreover, 16S ribosomal ribonucleic acid (rRNA) gene sequencing was used to identify the main microbial communities. The results demonstrated that THMs and HAAs increased with increasing disinfectant dosages, while the quantity of NAs (mainly nitroso dimethylamine (NDMA)) was not significantly related to disinfectant dosages for each disinfection strategy. Chloroform (TCM) and dichloroacetic acid (DCAA) were the dominant THMs and HAAs species, respectively. NDMA existed in the samples before disinfections, which may due to the metabolic activity of microorganisms. Pre-O3 increased THMs formation during subsequent Cl2 and NH2Cl treatment. However, pre-O3 effectively reduced HAAs produced by subsequent chlorination. O3/Cl2 disinfection had the highest DBPs formation potential (DBPFP) (883.6 nM), while its calculated toxicity was similar to that in Cl2 disinfection treatment. Pseudomonas was the most abundant bacterial genus in biofilm of WDS pipeline. This study can aid in an optimal disinfection strategy for water treatment plants to reduce the toxicity of DBPs caused by biomass in pipelines and ensure water quality safety.


Asunto(s)
Desinfectantes , Ozono , Contaminantes Químicos del Agua/análisis , Purificación del Agua , Acetatos , Cloro , Desinfección , Halogenación , Extractos Vegetales , Trihalometanos/análisis
6.
Polymers (Basel) ; 11(3)2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-30960494

RESUMEN

High-molecular weight nylon 66/modified clay (Mclay) nanocomposites with a low apparent viscosity were prepared by in-situ polymerization and post solid-state polycondensation. Thermogravimetric analysis and X-ray diffraction patterns of the Mclay revealed that cetyltrimethyl ammonium bromide successfully inserted into the interlayers of the clay. Scanning electron microscope images of the cross sections showed that the Mclay was well-dispersed in the nylon 66 matrix. The effects of clay on the mechanical, rheological, and thermal properties of the nanocomposites were investigated using an Instron 5969 machine, a capillary rheometer, and a differential scanning calorimeter. The results indicated that the incorporation of a very small amount of Mclay considerably decreased the shear viscosity of the nanocomposites and increased the melt index, acting as a viscosity reducer. More importantly, the mechanical properties and spinnability of the nylon 66/Mclay nanocomposites were not affected by the viscosity reducer.

7.
Nanotechnology ; 28(7): 075203, 2017 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-28084221

RESUMEN

In the modern era, the invention of new energy sources is important in order to make advances possible in electronic media. A triboelectric nanogenerator (TENG) is considered to be strong design that converts mechanical power into electrical power, using organic (polymer) or inorganic (lead, ceramic etc) materials to initiate the triboelectrification process, followed by charge separation. In this study, a lead-free BaTiO3/PDMS-Al-based TENG was fabricated by mixing tetragonal ferroelectric BaTiO3 nanocrystals in a PDMS matrix to make a composite for a working electrode film. It is worth noting that a new post- poling process has been introduced to align the dipole structures in the BaTiO3 nanocrystals, and to attain a high electron density on the surface of the working electrode film. The output was recorded up to 375 V and 6 µA of close circuit voltage and short circuit current, respectively, at a current density of 0.3 µA cm-2 and an effective power equal to 2.25 mW at a load resistance of 100 MΩ, and is four times higher than a PDMS-Al-based TENG. This study also reveals the hidden locks that will enable other inorganic materials with a dipole structure to enhance their output using the post-poling technique. The TENG has a vast field of applications due to its stability, the flexibility of its thin films and its biocompatibility. It is also an aid for exploring new TENG devices with enhanced output performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA