Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37896295

RESUMEN

This paper presents an experimental study on the compressive performance of longitudinal steel-fiber-reinforced polymer composite bars (SFCBs) in concrete cylinders confined by different type of fiber-reinforced polymer (FRP) composites. Three types of concrete cylinders reinforced with (or without) longitudinal SFCBs and different transverse FRP confinements were tested under monotonic compression. The results showed that the post-yield stiffness of SFCBs is higher when confined with high elastic modulus carbon fiber-reinforced polymer (CFRP) composite than with low elastic modulus basalt fiber-reinforced polymer (BFRP) composite. Decreasing confinement spacing did not significantly improve the compressive strength of SFCBs in concrete cylinders. The compressive failure strain of SFCBs could possibly reach 88% of its tensile peak strain in concrete cylinders confined by CFRP sheets, which is significantly higher than the value (around 50%) in previous studies. Existing design equations, which applied a strength reduction factor or a maximum compressive strain of concrete to consider the compressive contributions of SFCBs in concrete members, underestimate the load-carrying capacity of SFCB-reinforced concrete cylinders. The design equation that considers the actual compressive stress of SFCBs gives the most accurate prediction; however, its applicability and accuracy need to be verified with more experimental data.

2.
Polymers (Basel) ; 14(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36432937

RESUMEN

Bolted connections usually govern the structural rigidity and load-carrying capacity of pultruded glass fiber-reinforced polymer (GFRP) truss structures. In this study, a novel bolted integrated gusset plate (IGP) connection is proposed to enhance the stiffness and capacity of GFRP truss structures. Nine double-lap shear tests of GFRP joints and numerical simulation were conducted to investigate the influence of variable design parameters of the bolted GFRP joints (number of bolts, width and thickness of GFRP, edge distance of bolts, and the employment of adhesive). Three full-scale GFRP truss joints were tested under static loading to study the response of a typical bolted connection, a bolted gusset plate connection, and the proposed IGP connection. The nine double-lap shear tests showed that the bolted-bonded mixed connection has 50% higher shear stiffness and 27% higher ductility compared with bolted joints, and bearing failure dominated the capacity of most specimens, which agreed well with numerical simulation results. Tests on the three full-scale GFRP truss joints showed that the bolted gusset plate can substantially reduce the number of cracks and improve the initial stiffness, but the maximum bearing capacity of the joints did not increase because the shear fracture of pultruded GFRP webs governs the capacity. The proposed IGP substantially increased the stiffness and capacity compared with the bolted connection and typical bolted gusset plate connection. The full-scale GFRP joint test is suggested to be used together with direct shear tests to study the performance of joints of the GFRP truss.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA