Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 13(8)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-36014183

RESUMEN

Compliant bipedal robots demonstrate a potential for impact resistance and high energy efficiency through the introduction of compliant elements. However, it also adds to the difficulty of stable control of the robot. To motivate the control strategies of compliant bipedal robots, this work presents an improved control strategy for the stable and fast planar jumping of a compliant one-legged robot designed by the authors, which utilizes the concept of the virtual pendulum. The robot was modeled as an extended spring-loaded inverted pendulum (SLIP) model with non-negligible torso inertia, leg inertia, and leg damping. To enable the robot to jump forward stably, a foot placement method was adopted, where due to the asymmetric feature of the extended SLIP model, a variable time coefficient and an integral term with respect to the forward speed tracking error were introduced to the method to accurately track a given forward speed. An energy-based leg rest length regulation method was used to compensate for the energy dissipation due to leg damping, where an integral term, regarding jumping height tracking error, was introduced to accurately track a given jumping height. Numerical simulations were conducted to validate the effectiveness of the proposed control strategy. Results show that stable and fast jumping of compliant one-legged robots could be achieved, and the desired forward speed and jumping height could also be accurately tracked. In addition to that, using the proposed control strategy, the robust jumping performance of the robot could be observed in the presence of disturbances from state variables or uneven terrain.

2.
Materials (Basel) ; 15(2)2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35057155

RESUMEN

Lightweight parts manufactured by metal selective laser melting (SLM) are widely applied in machinery industries because of their high specific strength, good energy absorption effect, and complex shape that are difficult to form by mechanical machining. These samples often serve in three-dimensional stress states. However, previous publications mainly focused on the unidirectional tensile/compressive properties of the samples. In this paper, AlMgSc samples with different geometric parameters were prepared by the SLM process, and the variation of force and microstructure during three-point bending were systematically investigated. The results demonstrate that the deformation resistance of these samples has good continuity without mutation in bending, even for brittle materials; the bending force-displacement curves exhibit representative variation stages during the entire bending process; the equivalent bending strength deduced from free bending formula is not applicable when compactability is less than 67%. The variations of grain orientation and size of the three representative bending layers also show regularity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA