Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomaterials ; 35(31): 8820-8828, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25047625

RESUMEN

Chronic fibrosis caused by acute myocardial infarction (MI) leads to increased morbidity and mortality due to cardiac dysfunction. We have developed a therapeutic materials strategy that aims to mitigate myocardial fibrosis by utilizing injectable polymeric microstructures to mechanically alter the microenvironment. Polymeric microstructures were fabricated using photolithographic techniques and studied in a three-dimensional culture model of the fibrotic environment and by direct injection into the infarct zone of adult rats. Here, we show dose-dependent down-regulation of expression of genes associated with the mechanical fibrotic response in the presence of microstructures. Injection of this microstructured material into the infarct zone decreased levels of collagen and TGF-ß, increased elastin deposition and vascularization in the infarcted region, and improved functional outcomes after six weeks. Our results demonstrate the efficacy of these discrete anti-fibrotic microstructures and suggest a potential therapeutic materials approach for combatting pathologic fibrosis.


Asunto(s)
Materiales Biocompatibles/uso terapéutico , Metacrilatos/uso terapéutico , Infarto del Miocardio/patología , Infarto del Miocardio/terapia , Miocardio/patología , Polietilenglicoles/uso terapéutico , Células 3T3 , Animales , Materiales Biocompatibles/administración & dosificación , Colágeno/análisis , Femenino , Fibroblastos/citología , Fibrosis , Metacrilatos/administración & dosificación , Ratones , Microtecnología , Polietilenglicoles/administración & dosificación , Ratas Sprague-Dawley , Ingeniería de Tejidos
2.
Biomaterials ; 31(27): 7012-20, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20566215

RESUMEN

The combination of scaffold material and cell transplantation therapy has been extensively investigated in cardiac tissue engineering. However, many polymers are difficult to administer or lack the structural integrity to restore LV function. Additionally, polymers need to be biological friendly, favorably influence the microenvironment and increase stem cell retention and survival. This study determined whether human mesenchymal stem cells (hMSCs) encapsulated in RGD modified alginate microspheres are capable of facilitating myocardial repair. The in vitro study of hMSCs demonstrated that the RGD modified alginate can improve cell attachment, growth and increase angiogenic growth factor expression. Alginate microbeads and hMSCs encapsulated in microbeads successfully maintained LV shape and prevented negative LV remodeling after an MI. Cell survival was significantly increased in the encapsulated hMSC group compared with PBS control or cells alone. Microspheres, hMSCs, and hMSCs in microspheres groups reduced infarct area and enhanced arteriole formation. In summary, surface modification and microencapsulation techniques can be combined with cell transplantation leading to the maintenance of LV geometry, preservation of LV function, increase of angiogenesis and improvement of cell survival.


Asunto(s)
Alginatos/química , Células Madre Mesenquimatosas/citología , Microesferas , Infarto del Miocardio/terapia , Oligopéptidos/química , Ingeniería de Tejidos/métodos , Animales , Supervivencia Celular , Modelos Animales de Enfermedad , Ecocardiografía , Femenino , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/fisiología , Reacción en Cadena de la Polimerasa , Ratas , Ratas Desnudas
3.
Biomaterials ; 30(5): 751-6, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19010528

RESUMEN

Congestive heart failure (CHF) is a chronic disease with a high mortality rate. Managing CHF patients has been one of the most severe health care problems for years. Scaffold materials have been predominantly investigated in acute myocardial infarction (MI) studies and have shown promising improvement in LV function. In this study we examined whether surface modification of a biomaterial can influence the myocardial microenvironment and improve myocardial function in a rodent model of ischemic cardiomyopathy. In vitro cell culture and in vivo rat studies were performed. RGD peptides conjugated to alginate improved human umbilical vein endothelial cell (HUVEC) proliferation and adhesion when compared to a non-modified alginate group. Injection of the alginate hydrogel into the infarct area of rats 5 weeks post-MI demonstrated that both modified and non-modified alginate improve heart function, while LV function in the control group deteriorated. Both the RGD modified alginate and non-modified alginate increased the arteriole density compared to control, with the RGD modified alginate having the greatest angiogenic response. These results suggest that in situ use of modified polymers may influence the tissue microenvironment and serve as a potential therapeutic agent for patients with chronic heart failure.


Asunto(s)
Alginatos/farmacología , Oligopéptidos/química , Función Ventricular Izquierda/efectos de los fármacos , Animales , Adhesión Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Ácido Glucurónico/farmacología , Ácidos Hexurónicos/farmacología , Humanos , Infarto del Miocardio/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley , Remodelación Ventricular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA