Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38463952

RESUMEN

Gene transcription is a highly regulated process, and deregulation of transcription factors activity underlies numerous pathologies including cancer. Albeit near four decades of studies have established that the E2F pathway is a core transcriptional network that govern cell division in multi-cellular organisms1,2, the molecular mechanisms that underlie the functions of E2F transcription factors remain incompletely understood. FOXK1 and FOXK2 transcription factors have recently emerged as important regulators of cell metabolism, autophagy and cell differentiation3-6. While both FOXK1 and FOXK2 interact with the histone H2AK119ub deubiquitinase BAP1 and possess many overlapping functions in normal biology, their specific functions as well as deregulation of their transcriptional activity in cancer is less clear and sometimes contradictory7-13. Here, we show that elevated expression of FOXK1, but not FOXK2, in primary normal cells promotes transcription of E2F target genes associated with increased proliferation and delayed entry into cellular senescence. FOXK1 expressing cells are highly prone to cellular transformation revealing important oncogenic properties of FOXK1 in tumor initiation. High expression of FOXK1 in patient tumors is also highly correlated with E2F gene expression. Mechanistically, we demonstrate that FOXK1, but not FOXK2, is specifically modified by O-GlcNAcylation. FOXK1 O-GlcNAcylation is modulated during the cell cycle with the highest levels occurring during the time of E2F pathway activation at G1/S. Moreover, loss of FOXK1 O-GlcNAcylation impairs FOXK1 ability to promote cell proliferation, cellular transformation and tumor growth. Mechanistically, expression of FOXK1 O-GlcNAcylation-defective mutants results in reduced recruitment of BAP1 to gene regulatory regions. This event is associated with a concomitant increase in the levels of histone H2AK119ub and a decrease in the levels of H3K4me1, resulting in a transcriptional repressive chromatin environment. Our results define an essential role of O-GlcNAcylation in modulating the functions of FOXK1 in controlling the cell cycle of normal and cancer cells through orchestration of the E2F pathway.

2.
Nat Struct Mol Biol ; 31(1): 92-101, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177665

RESUMEN

Pioneer transcription factors direct cell differentiation by deploying new enhancer repertoires through their unique ability to target and initiate remodelling of closed chromatin. The initial steps of their action remain undefined, although pioneers have been shown to interact with nucleosomal target DNA and with some chromatin-remodeling complexes. We now define the sequence of events that enables the pioneer Pax7 with its unique abilities. Chromatin condensation exerted by linker histone H1 is the first constraint on Pax7 recruitment, and this establishes the initial speed of chromatin remodeling. The first step of pioneer action involves recruitment of the KDM1A (LSD1) H3K9me2 demethylase for removal of this repressive mark, as well as recruitment of the MLL complex for deposition of the activating H3K4me1 mark. Further progression of pioneer action requires passage through cell division, and this involves dissociation of pioneer targets from perinuclear lamin B. Only then are the SWI-SNF remodeling complex and the coactivator p300 recruited, leading to nucleosome displacement and enhancer activation. Thus, the unique features of pioneer actions are those occurring in the lamin-associated compartment of the nucleus. This model is consistent with previous work that showed a dependence on cell division for establishment of new cell fates.


Asunto(s)
Cromatina , Nucleosomas , Diferenciación Celular/genética , Ciclo Celular , División Celular , Ensamble y Desensamble de Cromatina
4.
Nucleic Acids Res ; 51(14): 7254-7268, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37326021

RESUMEN

Pioneer factors are transcription factors (TFs) that have the unique ability to recognise their target DNA sequences within closed chromatin. Whereas their interactions with cognate DNA is similar to other TFs, their ability to interact with chromatin remains poorly understood. Having previously defined the modalities of DNA interactions for the pioneer factor Pax7, we have now used natural isoforms of this pioneer as well as deletion and replacement mutants to investigate the Pax7 structural requirements for chromatin interaction and opening. We show that the GL+ natural isoform of Pax7 that has two extra amino acids within the DNA binding paired domain is unable to activate the melanotrope transcriptome and to fully activate a large subset of melanotrope-specific enhancers targeted for Pax7 pioneer action. This enhancer subset remains in the primed state rather than being fully activated, despite the GL+ isoform having similar intrinsic transcriptional activity as the GL- isoform. C-terminal deletions of Pax7 lead to the same loss of pioneer ability, with similar reduced recruitments of the cooperating TF Tpit and of the co-regulators Ash2 and BRG1. This suggests complex interrelations between the DNA binding and C-terminal domains of Pax7 that are crucial for its chromatin opening pioneer ability.


Asunto(s)
Cromatina , Factor de Transcripción PAX7 , Cromatina/metabolismo , ADN/metabolismo , Isoformas de Proteínas/genética , Humanos , Animales , Ratones , Factor de Transcripción PAX7/metabolismo
5.
J Neuroendocrinol ; 34(8): e13147, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35524583

RESUMEN

During development, highly specialized differentiated cells, such as pituitary secretory cells, acquire their identity and properties through a series of specification events exerted by transcription factors to implement a unique gene expression program and epigenomic state. The investigation of these developmental processes informs us on the unique features of a cell lineage, both to explain these features and also to outline where these processes may fail and cause disease. This review summarizes present knowledge on the developmental origin of pituitary corticotroph and melanotroph cells and on the underlying molecular mechanisms. At the onset, comparison of gene expression programs active in pituitary progenitors compared to those active in differentiated corticotrophs or melanotrophs indicated dramatic differences in the control of, for example, the cell cycle. Tpit is the transcription factor that determines terminal differentiation of pro-opiomelanocortin (POMC) lineages, both corticotrophs and melanotrophs, and its action involves this switch in cell cycle control in parallel with activation of cell-specific gene expression. There is thus far more to making a corticotroph cell than just activating transcription of the POMC gene. Indeed, Tpit also controls implementation of mechanisms for enhanced protein translation capacity and development of extensive secretory organelles. The corticotroph cell identity also includes mechanisms responsible for homotypic cell-cell interactions between corticotrophs and for privileged heterotypic cell interactions with pituitary cells of other lineages. The review also summarizes current knowledge on how a pioneer transcription factor, Pax7, remodels the epigenome such that the same determination transcription factor, Tpit, will implement the melanotroph program of gene expression. Finally, this canvas of regulatory mechanisms implementing POMC lineage identities constitutes the background to understand alterations that characterize corticotroph adenomas of Cushing's disease patients. The integration of all these data into a unified scheme will likely yield a scheme to globally understand pathogenic mechanisms in Cushing's disease.


Asunto(s)
Adenoma , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT) , Adenoma/genética , Carcinogénesis , Corticotrofos/metabolismo , Proteínas de Homeodominio/genética , Humanos , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/genética , Proopiomelanocortina/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo
6.
Nat Rev Mol Cell Biol ; 23(7): 449-464, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35264768

RESUMEN

Pioneer factors are transcription factors with the unique ability to initiate opening of closed chromatin. The stability of cell identity relies on robust mechanisms that maintain the epigenome and chromatin accessibility to transcription factors. Pioneer factors counter these mechanisms to implement new cell fates through binding of DNA target sites in closed chromatin and introduction of active-chromatin histone modifications, primarily at enhancers. As master regulators of enhancer activation, pioneers are thus crucial for the implementation of correct cell fate decisions in development, and as such, they hold tremendous potential for therapy through cellular reprogramming. The power of pioneer factors to reshape the epigenome also presents an Achilles heel, as their misexpression has major pathological consequences, such as in cancer. In this Review, we discuss the emerging mechanisms of pioneer factor functions and their roles in cell fate specification, cellular reprogramming and cancer.


Asunto(s)
Epigenoma , Neoplasias , Diferenciación Celular/genética , Cromatina/genética , Humanos , Neoplasias/genética , Factores de Transcripción/metabolismo
7.
Nucleic Acids Res ; 49(13): 7424-7436, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34197620

RESUMEN

The pioneer transcription factor Pax7 contains two DNA binding domains (DBD), a paired and a homeo domain. Previous work on Pax7 and the related Pax3 showed that each DBD binds a cognate DNA sequence, thus defining two targets of binding and possibly modalities of action. Genomic targets of Pax7 pioneer action leading to chromatin opening are enriched for composite DNA target sites containing juxtaposed sites for both paired and homeo domains. The present work investigated the implication of the DBDs in pioneer action. We show that the composite sequence is a higher affinity binding site and that efficient binding to this site involves both DBDs of the same Pax7 molecule. This binding is not sensitive to cytosine methylation of the DNA sites consistent with pioneer action within nucleosomal heterochromatin. Introduction of single amino acid mutations in either paired or homeo domain that impair binding to cognate DNA sequences showed that both DBDs must be intact for pioneer action. In contrast, only the paired domain is required for low affinity binding of heterochromatin sites. Thus, Pax7 pioneer action on heterochromatin requires unique protein:DNA interactions that are more complex compared to its simpler DNA binding modalities at accessible enhancer target sites.


Asunto(s)
Factor de Transcripción PAX7/química , Factor de Transcripción PAX7/metabolismo , Sitios de Unión , Células Cultivadas , Citosina/metabolismo , ADN/química , ADN/metabolismo , Metilación de ADN , Mutación , Motivos de Nucleótidos , Factor de Transcripción PAX7/genética , Unión Proteica , Dominios Proteicos , Activación Transcripcional
8.
Nat Commun ; 12(1): 3086, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035267

RESUMEN

Meis1 and Meis2 are homeodomain transcription factors that regulate organogenesis through cooperation with Hox proteins. Elimination of Meis genes after limb induction has shown their role in limb proximo-distal patterning; however, limb development in the complete absence of Meis function has not been studied. Here, we report that Meis1/2 inactivation in the lateral plate mesoderm of mouse embryos leads to limb agenesis. Meis and Tbx factors converge in this function, extensively co-binding with Tbx to genomic sites and co-regulating enhancers of Fgf10, a critical factor in limb initiation. Limbs with three deleted Meis alleles show proximal-specific skeletal hypoplasia and agenesis of posterior skeletal elements. This failure in posterior specification results from an early role of Meis factors in establishing the limb antero-posterior prepattern required for Shh activation. Our results demonstrate roles for Meis transcription factors in early limb development and identify their involvement in previously undescribed interaction networks that regulate organogenesis.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas de Homeodominio/genética , Esbozos de los Miembros/metabolismo , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factor 10 de Crecimiento de Fibroblastos/genética , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas de Homeodominio/metabolismo , Esbozos de los Miembros/embriología , Ratones Noqueados , Ratones Transgénicos , Modelos Genéticos , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional/genética
9.
Eur J Endocrinol ; 184(1): R1-R15, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33112269

RESUMEN

Pioneer transcription factors have key roles in development as master regulators of cell fate specification. Only a small fraction of all transcription factors have the pioneer ability that confers access to target genomic DNA sites embedded in so-called 'closed' heterochromatin. This ability to seek and bind target sites within the silenced portion of the epigenome is the basis for their role in changing cell fate. Upon binding heterochromatin sites, pioneer factors trigger remodeling of chromatin from a repressed into an active organization. This action is typically exerted at enhancer regulatory sequences, thus allowing activation of new gene subsets. During pituitary development, the only pioneer with a well-documented role is Pax7 that specifies the intermediate lobe melanotrope cell fate. In this review, a particular focus is placed on this Pax7 function but its properties are also considered within the general context of pioneer factor action. Given their potent activity to reprogram gene expression, it is not surprising that many pioneers are associated with tumor development. Overexpression or chromosomal translocations leading to the production of chimeric pioneers have been implicated in different cancers. We review here the current knowledge on the mechanism of pioneer factor action.


Asunto(s)
Carcinogénesis/genética , Factor de Transcripción PAX7/fisiología , Hipófisis/crecimiento & desarrollo , Neoplasias Hipofisarias/genética , Factores de Transcripción/fisiología , Animales , Diferenciación Celular/genética , Cromatina/fisiología , Heterocromatina/fisiología , Humanos , Translocación Genética/genética
10.
Nat Commun ; 11(1): 2491, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32427842

RESUMEN

Hox genes encode transcription factors (TFs) that establish morphological diversity in the developing embryo. The similar DNA-binding motifs of the various HOX TFs contrast with the wide-range of HOX-dependent genetic programs. The influence of the chromatin context on HOX binding specificity remains elusive. Here, we used the developing limb as a model system to compare the binding specificity of HOXA13 and HOXD13 (HOX13 hereafter), which are required for digit formation, and HOXA11, involved in forearm/leg development. We find that upon ectopic expression in distal limb buds, HOXA11 binds sites normally HOX13-specific. Importantly, these sites are loci whose chromatin accessibility relies on HOX13. Moreover, we show that chromatin accessibility specific to the distal limb requires HOX13 function. Based on these results, we propose that HOX13 TFs pioneer the distal limb-specific chromatin accessibility landscape for the proper implementation of the distal limb developmental program.


Asunto(s)
Cromatina/genética , Miembro Anterior/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Esbozos de los Miembros/metabolismo , Animales , Sitios de Unión/genética , Cromatina/metabolismo , Miembro Anterior/embriología , Perfilación de la Expresión Génica/métodos , Proteínas de Homeodominio/metabolismo , Esbozos de los Miembros/embriología , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Unión Proteica
11.
Hum Mol Genet ; 29(5): 785-802, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-31943018

RESUMEN

Down syndrome (DS), caused by the triplication of human chromosome 21, leads to significant alterations in brain development and is a major genetic cause of intellectual disability. While much is known about changes to neurons in DS, the effects of trisomy 21 on non-neuronal cells such as astrocytes are poorly understood. Astrocytes are critical for brain development and function, and their alteration may contribute to DS pathophysiology. To better understand the impact of trisomy 21 on astrocytes, we performed RNA-sequencing on astrocytes from newly produced DS human induced pluripotent stem cells (hiPSCs). While chromosome 21 genes were upregulated in DS astrocytes, we found consistent up- and down-regulation of genes across the genome with a strong dysregulation of neurodevelopmental, cell adhesion and extracellular matrix molecules. ATAC (assay for transposase-accessible chromatin)-seq also revealed a global alteration in chromatin state in DS astrocytes, showing modified chromatin accessibility at promoters of cell adhesion and extracellular matrix genes. Along with these transcriptomic and epigenomic changes, DS astrocytes displayed perturbations in cell size and cell spreading as well as modifications to cell-cell and cell-substrate recognition/adhesion, and increases in cellular motility and dynamics. Thus, triplication of chromosome 21 is associated with genome-wide transcriptional, epigenomic and functional alterations in astrocytes that may contribute to altered brain development and function in DS.


Asunto(s)
Astrocitos/patología , Adhesión Celular , Síndrome de Down/patología , Regulación de la Expresión Génica , Genoma Humano , Células Madre Pluripotentes Inducidas/patología , Células-Madre Neurales/patología , Astrocitos/metabolismo , Diferenciación Celular , Movimiento Celular , Síndrome de Down/genética , Síndrome de Down/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células-Madre Neurales/metabolismo , Transcriptoma
12.
Nat Commun ; 10(1): 3960, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31481663

RESUMEN

Translation is a basic cellular process and its capacity is adapted to cell function. In particular, secretory cells achieve high protein synthesis levels without triggering the protein stress response. It is unknown how and when translation capacity is increased during differentiation. Here, we show that the transcription factor Creb3l2 is a scaling factor for translation capacity in pituitary secretory cells and that it directly binds ~75% of regulatory and effector genes for translation. In parallel with this cell-autonomous mechanism, implementation of the physiological UPR pathway prevents triggering the protein stress response. Knockout mice for Tpit, a pituitary differentiation factor, show that Creb3l2 expression and its downstream regulatory network are dependent on Tpit. Further, Creb3l2 acts by direct targeting of translation effector genes in parallel with signaling pathways that otherwise regulate protein synthesis. Expression of Creb3l2 may be a useful means to enhance production of therapeutic proteins.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Hipófisis/metabolismo , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Diferenciación Celular/fisiología , Línea Celular , Retículo Endoplásmico/genética , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Hipófisis/citología , Proopiomelanocortina/metabolismo , Transducción de Señal , Proteínas de Dominio T Box/genética , Proteína 1 de Unión a la X-Box/metabolismo , Xenopus laevis
13.
Nat Commun ; 10(1): 3807, 2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31444346

RESUMEN

Pioneer transcription factors are characterized by having the unique property of enabling the opening of closed chromatin sites, for implementation of cell fates. We previously found that the pioneer Pax7 specifies melanotrope cells through deployment of an enhancer repertoire, which allows binding of Tpit, a nonpioneer factor that determines the related lineages of melanotropes and corticotropes. Here, we investigate the relation between these two factors in the pioneer mechanism. Cell-specific gene expression and chromatin landscapes are defined by scRNAseq and chromatin accessibility profiling. We find that in vivo deployment of the melanotrope enhancer repertoire and chromatin opening requires both Pax7 and Tpit. In cells, binding of heterochromatin targets by Pax7 is independent of Tpit but Pax7-dependent chromatin opening requires Tpit. The present work shows that pioneer core properties are limited to the ability to recognize heterochromatin targets and facilitate nonpioneer binding. Chromatin opening per se may be provided through cooperation with nonpioneer factors.


Asunto(s)
Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Heterocromatina/metabolismo , Proteínas de Homeodominio/metabolismo , Factor de Transcripción PAX7/metabolismo , Proteínas de Dominio T Box/metabolismo , Animales , Línea Celular Tumoral , Corticotrofos/fisiología , Elementos de Facilitación Genéticos , Perfilación de la Expresión Génica , Proteínas de Homeodominio/genética , Masculino , Melanotrofos/fisiología , Ratones Noqueados , Factor de Transcripción PAX7/genética , Unión Proteica/genética , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Proteínas de Dominio T Box/genética
14.
Elife ; 72018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30106373

RESUMEN

Skeletal muscle regeneration depends on satellite cells. After injury these muscle stem cells exit quiescence, proliferate and differentiate to regenerate damaged fibres. We show that this progression is accompanied by metabolic changes leading to increased production of reactive oxygen species (ROS). Using Pitx2/3 single and double mutant mice that provide genetic models of deregulated redox states, we demonstrate that moderate overproduction of ROS results in premature differentiation of satellite cells while high levels lead to their senescence and regenerative failure. Using the ROS scavenger, N-Acetyl-Cysteine (NAC), in primary cultures we show that a physiological increase in ROS is required for satellite cells to exit the cell cycle and initiate differentiation through the redox activation of p38α MAP kinase. Subjecting cultured satellite cells to transient inhibition of P38α MAP kinase in conjunction with NAC treatment leads to their rapid expansion, with striking improvement of their regenerative potential in grafting experiments.


Asunto(s)
Proteínas de Homeodominio/genética , Proteína Quinasa 14 Activada por Mitógenos/genética , Regeneración/genética , Factores de Transcripción/genética , Acetilcisteína/administración & dosificación , Animales , Diferenciación Celular/genética , Senescencia Celular/genética , Ratones , Músculo Esquelético/citología , Mutación , Oxidación-Reducción , Especies Reactivas de Oxígeno , Células Satélite del Músculo Esquelético , Células Madre/citología , Proteína del Homeodomínio PITX2
15.
Dev Biol ; 439(2): 65-68, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29705333

RESUMEN

Forelimbs (FLs) and hindlimbs (HLs) develop under the instructive and integrated guidance of signaling centers and transcription factor (TF) action. The development of structures specific to each limb type depends on the limb-specific modulation of these integrated components. Pitx1 is a transcription factor gene expressed in HL, absent in FL, and required for HL-specific patterning and development, in particular for formation of anterior HL skeletal elements. Pitx1 achieves this function by direct TF action on the core limb program, which is largely shared between FL and HL. Shh signaling plays a crucial role in anterior-posterior (AP) patterning in both FL and HL. The present work assessed the relationship between Shh signaling and Pitx1 action for AP patterning. We found that reducing the gene dosage of Shh in the context of the Pitx1-/- HL decreases the severity of the Pitx1-/- phenotype, in particular, the loss of anterior limb structures and the shortening of femur length. However, this did not rescue HL-specific patterning features. Thus, Pitx1 action integrates Shh signaling but not for limb-type-specific patterning.


Asunto(s)
Proteínas Hedgehog/genética , Proteínas Hedgehog/fisiología , Factores de Transcripción Paired Box/metabolismo , Animales , Tipificación del Cuerpo/genética , Extremidades/embriología , Miembro Anterior/embriología , Miembro Anterior/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Hedgehog/metabolismo , Miembro Posterior/embriología , Miembro Posterior/metabolismo , Proteínas de Homeodominio/metabolismo , Esbozos de los Miembros/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/fisiología , Fenotipo , Transducción de Señal/genética , Factores de Transcripción/metabolismo
16.
Development ; 145(6)2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29490982

RESUMEN

In tetrapods, Tbx4, Tbx5 and Hox cluster genes are crucial for forelimb and hindlimb development and mutations in these genes are responsible for congenital limb defects. The molecular basis of their integrated mechanisms of action in the context of limb development remains poorly understood. We studied Tbx4 and Hoxc10 owing to their overlapping loss-of-function phenotypes and colocalized expression in mouse hindlimb buds. We report an extensive overlap between Tbx4 and Hoxc10 genome occupancy and their putative target genes. Tbx4 and Hoxc10 interact directly with each other, have the ability to bind to a previously unrecognized T-box-Hox composite DNA motif and show synergistic activity when acting on reporter genes. Pitx1, the master regulator for hindlimb specification, also shows extensive genomic colocalization with Tbx4 and Hoxc10. Genome occupancy by Tbx4 in hindlimb buds is similar to Tbx5 occupancy in forelimbs. By contrast, another Hox factor, Hoxd13, also interacts with Tbx4/Tbx5 but antagonizes Tbx4/Tbx5-dependent transcriptional activity. Collectively, the modulation of Tbx-dependent activity by Hox factors acting on common DNA targets may integrate different developmental processes for the balanced formation of proportionate limbs.


Asunto(s)
Tipificación del Cuerpo/genética , Genes Homeobox/genética , Esbozos de los Miembros/metabolismo , Proteínas de Dominio T Box/metabolismo , Animales , Ensayo de Cambio de Movilidad Electroforética , Regulación del Desarrollo de la Expresión Génica , Miembro Posterior/metabolismo , Inmunoprecipitación , Ratones , Morfogénesis/genética , Factores de Transcripción Paired Box/metabolismo
17.
J Biol Chem ; 293(36): 13795-13804, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-29507097

RESUMEN

Pioneer transcription factors have the unique and important role of unmasking chromatin domains during development to allow the implementation of new cellular programs. Compared with those of other transcription factors, this activity implies that pioneer factors can recognize their target DNA sequences in so-called compacted or "closed" heterochromatin and can trigger remodeling of the adjoining chromatin landscape to provide accessibility to nonpioneer transcription factors. Recent studies identified several steps of pioneer action, namely rapid but weak initial binding to heterochromatin and stabilization of binding followed by chromatin opening and loss of cytosine-phosphate-guanine (CpG) methylation that provides epigenetic memory. Whereas CpG demethylation depends on replication, chromatin opening does not. In this Minireview, we highlight the unique properties of this transcription factor class and the challenges of understanding their mechanism of action.


Asunto(s)
Epigénesis Genética/fisiología , Factores de Transcripción/fisiología , Animales , Cromatina/metabolismo , Metilación de ADN , Heterocromatina/metabolismo , Humanos , Unión Proteica
18.
Nat Genet ; 50(2): 259-269, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29358650

RESUMEN

Pioneer transcription factors establish new cell-fate competence by triggering chromatin remodeling. However, many features of pioneer action, such as their kinetics and stability, remain poorly defined. Here, we show that Pax7, by opening a unique repertoire of enhancers, is necessary and sufficient for specification of one pituitary lineage. Pax7 binds its targeted enhancers rapidly, but chromatin remodeling and gene activation are slower. Enhancers opened by Pax7 show a loss of DNA methylation and acquire stable epigenetic memory, as evidenced by binding of nonpioneer factors after Pax7 withdrawal. This work shows that transient Pax7 expression is sufficient for stable specification of cell identity.


Asunto(s)
Diferenciación Celular/genética , Linaje de la Célula/genética , Elementos de Facilitación Genéticos , Factor de Transcripción PAX7/metabolismo , Animales , Células Cultivadas , Metilación de ADN/genética , Regulación del Desarrollo de la Expresión Génica , Genes de Cambio , Inestabilidad Genómica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Especificidad de Órganos/genética , Unión Proteica
19.
Development ; 144(18): 3325-3335, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28807899

RESUMEN

Forelimbs (FLs) and hindlimbs (HLs) develop complex musculoskeletal structures that rely on the deployment of a conserved developmental program. Pitx1, a transcription factor gene with expression restricted to HL and absent from FL, plays an important role in generating HL features. The genomic mechanisms by which Pitx1 effects HL identity remain poorly understood. Here, we use expression profiling and analysis of direct Pitx1 targets to characterize the HL- and FL-restricted genetic programs in mouse and situate the Pitx1-dependent gene network within the context of limb-specific gene regulation. We show that Pitx1 is a crucial component of a narrow network of HL-restricted regulators, acting on a developmental program that is shared between FL and HL. Pitx1 targets sites that are in a similar chromatin state in FL and HL and controls expression of patterning genes as well as the chondrogenic program, consistent with impaired chondrogenesis in Pitx1-/- HL. These findings support a model in which multifactorial actions of a limited number of HL regulators redirect the generic limb development program in order to generate the unique structural features of the limb.


Asunto(s)
Miembro Posterior/embriología , Miembro Posterior/metabolismo , Organogénesis , Factores de Transcripción Paired Box/metabolismo , Animales , Secuencia de Bases , Condrogénesis/genética , Embrión de Mamíferos/metabolismo , Elementos de Facilitación Genéticos/genética , Epigénesis Genética , Miembro Anterior/embriología , Miembro Anterior/metabolismo , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Sitios Genéticos , Genoma , Proteínas de Homeodominio/metabolismo , Ratones , Organogénesis/genética , Factor de Transcripción SOX9/metabolismo
20.
Endocr Relat Cancer ; 24(8): 379-392, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28533356

RESUMEN

The CABLES1 cell cycle regulator participates in the adrenal-pituitary negative feedback, and its expression is reduced in corticotropinomas, pituitary tumors with a largely unexplained genetic basis. We investigated the presence of CABLES1 mutations/copy number variations (CNVs) and their associated clinical, histopathological and molecular features in patients with Cushing's disease (CD). Samples from 146 pediatric (118 germline DNA only/28 germline and tumor DNA) and 35 adult (tumor DNA) CD patients were screened for CABLES1 mutations. CNVs were assessed in 116 pediatric CD patients (87 germline DNA only/29 germline and tumor DNA). Four potentially pathogenic missense variants in CABLES1 were identified, two in young adults (c.532G > A, p.E178K and c.718C > T, p.L240F) and two in children (c.935G > A, p.G312D and c.1388A > G, and p.D463G) with CD; no CNVs were found. The four variants affected residues within or close to the predicted cyclin-dependent kinase-3 (CDK3)-binding region of the CABLES1 protein and impaired its ability to block cell growth in a mouse corticotropinoma cell line (AtT20/D16v-F2). The four patients had macroadenomas. We provide evidence for a role of CABLES1 as a novel pituitary tumor-predisposing gene. Its function might link two of the main molecular mechanisms altered in corticotropinomas: the cyclin-dependent kinase/cyclin group of cell cycle regulators and the epidermal growth factor receptor signaling pathway. Further studies are needed to assess the prevalence of CABLES1 mutations among patients with other types of pituitary adenomas and to elucidate the pituitary-specific functions of this gene.


Asunto(s)
Adenoma/genética , Proteínas Portadoras/genética , Ciclinas/genética , Fosfoproteínas/genética , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/genética , Neoplasias Hipofisarias/genética , Adolescente , Adulto , Animales , Línea Celular Tumoral , Niño , Variaciones en el Número de Copia de ADN , Femenino , Humanos , Masculino , Ratones , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA