Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Food Prot ; 67(7): 1512-6, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15270512

RESUMEN

The U.S. Department of Agriculture has cautioned against slow cooking meat such that the interior temperature increases from 10 degrees C (50 degrees F) to 54.4 degrees C (130 degrees F) in > or = 6 h. During a commercial ham-smoking process, the ham cold point is typically between 10 and 54.4 degrees C for 13 h, but the ham is subsequently exposed to heating sufficient to eliminate vegetative pathogenic bacteria. Thus, production of heat-stable staphylococcal enterotoxin is the primary biological hazard. For this study, uncooked surface and uncooked ground interior ham were inoculated with a three-strain Staphylococcus aureus mixture, exposed to simulated surface and interior slow-cook conditions, respectively, and analyzed periodically using the Baird-Parker agar and 3M Petrifilm Staph Express count plate methods. For the surface and interior conditions, S. aureus numbers increased by no more than 0.1 and 0.7 log units, respectively. Predictions derived from actual time and temperature data and S. aureus growth values from a computer-generated model (Pathogen Modeling Program 6.1, U.S. Department of Agriculture) were for 2.7 (ham surface) and 9.9 to 10.5 (ham interior) generations of S. aureus growth, indicating that use of model-derived growth values would not falsely indicate safe slow cooking of ham. The Baird-Parker method recovered significantly (P < 0.05) greater numbers of S. aureus than the Petrifilm Staph Express method. For hams pumped with brine to attain (i) 18% (wt/wt) weight gain, (ii) > or = 2.3% sodium lactate, (iii) > or = 0.8% sodium chloride, and (iv) 200 ppm ingoing sodium nitrite, slow-cooking critical limits of < or = 4 h between 10 and 34 degrees C, < or = 5 h between 34 and 46 degrees C, and < or = 5 h between 46 and 54.4 degrees C could be considered adequate to ensure safety.


Asunto(s)
Culinaria/métodos , Microbiología de Alimentos , Productos de la Carne/microbiología , Staphylococcus aureus/crecimiento & desarrollo , Animales , Recuento de Colonia Microbiana , Seguridad de Productos para el Consumidor , Enterotoxinas/metabolismo , Manipulación de Alimentos/métodos , Humanos , Valor Predictivo de las Pruebas , Porcinos , Temperatura , Factores de Tiempo
2.
J Food Prot ; 67(12): 2698-702, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15633674

RESUMEN

The survival of Listeria monocytogenes was evaluated on 15 ready-to-eat meat products made using drying, fermentation, and/or smoking. The products were obtained from six processors and included summer sausage, smoked cured beef, beef jerky, snack stick, and pork rind and crackling products. The water activity of the products ranged from 0.27 (pork rinds and cracklings) to 0.98 (smoked cured beef slices). Products were inoculated with a five-strain cocktail of L. monocytogenes, repackaged under either vacuum or air, and then stored either at room temperature (21degrees C) or under refrigeration (5 degrees C) for 4 to 11 weeks. Numbers of L. monocytogenes fell for all products during storage, ranging from a decrease of 0.8 log CFU on smoked cured beef slices during 11 weeks under vacuum at 5 degrees C to a decrease of 3.3 log CFU on a pork rind product stored 5 weeks under air at 21degrees C. All of the products tested could be produced under alternative 2 of the U.S. Department of Agriculture regulations mandating control of L. monocytogenes on ready-to-eat meat and poultry products. For many of the products, 1 week of postprocessing storage prior to shipment would act as an effective postlethality treatment and would allow processors to operate under alternative I of these regulations.


Asunto(s)
Manipulación de Alimentos/métodos , Embalaje de Alimentos/métodos , Listeria monocytogenes/crecimiento & desarrollo , Productos de la Carne/microbiología , Animales , Bovinos , Recuento de Colonia Microbiana , Fermentación , Microbiología de Alimentos , Humo , Porcinos , Temperatura , Factores de Tiempo , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA