Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 122(12): 124702, 2005 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-15836404

RESUMEN

The ability to chemically differentiate individual subsurface Al and Ga atoms, when imaging the Al0.1Ga0.9As(001)-c(2x8)(2x4) surface with scanning tunneling microscopy (STM), has been observed for the first time. In filled-state STM images first layer As atoms bonded to second layer Al atoms appear brighter than those bonded to second layer Ga atoms. This effect is only observed experimentally with p-type Al0.1Ga0.9As grown on p-type GaAs substrates and has been computationally modeled with density functional theory (DFT) calculations. It is hypothesized that chemical specificity is not observed on n-type material because the extra surface charge given to first layer As atoms by second layer Al atoms adds negligibly to the filled-state density of the surface, thus preventing the visualization of chemical specificity with filled-state STM imaging. The ability to distinguish whether first layer As atoms are bonded to second layer Ga and/or Al atoms in STM images shows that small differences in bond ionicity affect the local electronic structure of the material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA