Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 677(Pt A): 587-598, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39116558

RESUMEN

Electrochemical water splitting has been considered as a key pathway to generate environmentally friendly green hydrogen energy and it is essential to design highly efficient electrocatalysts at affordable cost to facilitate the redox reactions of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this work, a novel micro-clustered Ru/CuMnBP electrocatalyst is introduced, prepared via hydrothermal deposition and soaking-assisted Ru doping approaches on Ni foam substrate. Ru/CuMnBP micro-clusters exhibit relatively low HER/OER turnover overpotentials of 11 mV and 85 mV at 10 mA/cm2 in 1 M KOH. It also demonstrates a low 2-E turnover cell voltage of 1.53 V at 10 mA/cm2 for the overall water-splitting, which is comparable with the benchmark electrodes of Pt/C||RuO2. At a super high-current density of 2000 mA/cm2, the dual functional Ru/CuMnBP demonstrates an exceptionally low 2-E cell voltage of 3.13 V and also exhibits superior stability for over 10 h in 1 M KOH. Excellent electrochemical performances originate from the large electrochemical active surface area with the micro cluster morphology, high intrinsic activity of CuMnBP micro-clusters optimized through component ratio adjustment and the beneficial Ru doping effect, which enhances active site density, conductivity and stability. The usage of Ru in small quantities via the simple soaking doping approach significantly improves electrochemical reaction rates for both HER and OER, making Ru/CuMnBP micro-clusters promising candidates for advanced electrocatalytic applications.

2.
Nanomaterials (Basel) ; 14(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38668192

RESUMEN

Hydrogen is one of the most promising green energy alternatives due to its high gravimetric energy density, zero-carbon emissions, and other advantages. In this work, a CoFeBP micro-flower (MF) electrocatalyst is fabricated as an advanced water-splitting electrocatalyst by a hydrothermal approach for hydrogen production with the highly efficient hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The fabrication process of the CoFeBP MF electrocatalyst is systematically optimized by thorough investigations on various hydrothermal synthesis and post-annealing parameters. The best optimized CoFeBP MF electrode demonstrates HER/OER overpotentials of 20 mV and 219 mV at 20 mA/cm2. The CoFeBP MFs also exhibit a low 2-electrode (2-E) cell voltage of 1.60 V at 50 mA/cm2, which is comparable to the benchmark electrodes of Pt/C and RuO2. The CoFeBP MFs demonstrate excellent 2-E stability of over 100 h operation under harsh industrial operational conditions at 60 °C in 6 M KOH at a high current density of 1000 mA/cm2. The flower-like morphology can offer a largely increased electrochemical active surface area (ECSA), and systematic post-annealing can lead to improved crystallinity in CoFeBP MFs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA