Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; : 107760, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39260698

RESUMEN

The generation of an active [FeFe]-hydrogenase requires the synthesis of a complex metal center, the H-cluster, by three dedicated maturases: the radical S-adenosyl-l-methionine (SAM) enzymes HydE and HydG, and the GTPase HydF. A key step of [FeFe]-hydrogenase maturation is the synthesis of the dithiomethylamine (DTMA) bridging ligand, a process recently shown to involve the aminomethyl-lipoyl-H-protein from the glycine cleavage system, whose methylamine group originates from serine and ammonium. Here we use functional assays together with electron paramagnetic resonance and electron-nuclear double resonance spectroscopies to show that serine or aspartate together with their respective ammonia-lyase enzymes can provide the nitrogen for DTMA biosynthesis during in vitro [FeFe]-hydrogenase maturation. We also report bioinformatic analysis of the hyd operon, revealing a strong association with genes encoding ammonia-lyases, suggesting important biochemical and metabolic connections. Together, our results provide evidence that ammonia-lyases play an important role in [FeFe]-hydrogenase maturation by delivering the ammonium required for dithiomethylamine ligand synthesis.

2.
J Am Chem Soc ; 146(27): 18370-18378, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38940813

RESUMEN

The iron-molybdenum cofactor of nitrogenase (FeMoco) catalyzes fixation of N2 via Fe hydride intermediates. Our understanding of these species has relied heavily on the characterization of well-defined 3d metal hydride complexes, which serve as putative spectroscopic models. Although the Fe ions in FeMoco, a weak-field cluster, are expected to adopt locally high-spin Fe2+/3+ configurations, synthetically accessible hydride complexes featuring d5 or d6 electron counts are almost exclusively low-spin. We report herein the isolation of a terminal hydride complex of four-coordinate, high-spin (d5; S = 5/2) Mn2+. Electron paramagnetic resonance and electron-nuclear double resonance studies reveal an unusually large degree of spin density on the hydrido ligand. In light of the isoelectronic relationship between Mn2+ and Fe3+, our results are expected to inform our understanding of the valence electronic structures of reactive hydride intermediates derived from FeMoco.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA