Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 206: 198-209, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30553313

RESUMEN

Iron gall inks are known to be detrimental to the permanence of historic documents. Among the transition metals present, copper is the greatest threat and an open challenge due to the lack of Cu-specific treatments. In this study, we address the inhibition of copper by comparing extraction (a newly proposed glucose-based treatment) vs. chelation (phytate-based) approaches in terms of performances in scavenging copper and slowing the degradation rate, and of possibly induced side effects. Results show that the glucose treatment partially extracts copper, but it causes long-term damages to paper, i.e. increased fragility and discoloration. The phytate protocol was found beneficial in inhibiting the catalytic activity of copper-rich inks. It limits both long-term oxidation and hydrolytic breakdown of samples without compromising the visual appearance.

2.
Virus Genes ; 53(5): 749-757, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28725978

RESUMEN

The production and application of viral vectors are frequently performed genetic engineering operations. HIV-1-based lentiviral vectors, AAV2-based, and adenoviral vectors are amongst the most abundant viral vectors utilized for gene delivery. They are generally classified into risk group 1 or 2 (according to EU directive 2000/54/EC on the protection of workers from risks related to exposure to biological agents at work).


Asunto(s)
Vectores Genéticos/genética , Virus/genética , Animales , Técnicas de Transferencia de Gen , Ingeniería Genética/métodos , Terapia Genética/métodos , Humanos
3.
J Mech Behav Biomed Mater ; 71: 307-313, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28390303

RESUMEN

In the present paper, first results of the influence of the degradation of biodegradable materials on the hardness of the bone are presented in detail. For this purpose, different materials (Mg, Ti and biopolymers) were implanted into the femora of growing rats and bone cross sections were examined for the micro-hardness (MH). The aim of the present paper was to examine the mechanical response of the bone areas surrounding the implant at defined sites and at specified periods after implantation. A special focus was set on Mg alloys. In earlier in-vitro and in-vivo studies, an accumulation of Magnesium in the vicinity of the implant was detected by using different techniques. Therefore, micro-hardness measurements were performed, and the mechanical strength of bone was correlated with the exchange of Magnesium and Calcium in Hydroxyapatite. After the operation and implantation, the micro-hardness values became temporarily lower, but after complete degradation of the implants, the values were identical with those of specimens containing no implants.


Asunto(s)
Huesos/fisiología , Durapatita/análisis , Magnesio/análisis , Oseointegración , Prótesis e Implantes , Aleaciones , Animales , Ratas
4.
Acta Biomater ; 51: 526-536, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28111338

RESUMEN

This pilot study highlights the substantial potential of using isotopically enriched (non-radioactive) metals to study the fate of biodegradable metal implants. It was possible to show that magnesium (Mg) release can be observed by combining isotopic mass spectrometry and isotopic pattern deconvolution for data reduction, even at low amounts of Mg released a from slowly degrading 26Mg enriched (>99%) Mg metal. Following implantation into rats, structural in vivo changes were monitored by µCT. Results showed that the applied Mg had an average degradation rate of 16±5µmyear-1, which corresponds with the degradation rate of pure Mg. Bone and tissue extraction was performed 4, 24, and 52weeks after implantation. Bone cross sections were analyzed by laser ablation inductively coupled plasma mass spectrometry (ICP-MS) to determine the lateral 26Mg distribution. The 26Mg/24Mg ratios in digested tissue and excretion samples were analyzed by multi collector ICP-MS. Isotope pattern deconvolution in combination with ICP-MS enabled detection of Mg pin material in amounts as low as 200ppm in bone tissues and 20ppm in tissues up to two fold increased Mg levels with a contribution of pin-derived Mg of up to 75% (4weeks) and 30% (24weeks) were found adjacent to the implant. After complete degradation, no visual bone disturbance or residual pin-Mg could be detected in cortical bone. In organs, increased Δ26Mg/24Mg values up to 16‰ were determined compared to control samples. Increased Δ26Mg/24Mg values were detected in serum samples at a constant total Mg level. In contrast to urine, feces did not show a shift in the 26Mg/24Mg ratios. This investigation showed that the organism is capable of handling excess Mg well and that bones fully recover after degradation. STATEMENT OF SIGNIFICANCE: Magnesium alloys as bone implants have faced increasing attention over the past years. In vivo degradation and metabolism studies of these implant materials have shown the promising application in orthopaedic trauma surgery. With advance in Mg research it has become increasingly important to monitor the fate of the implant material in the organism. For the first time, the indispensible potential of isotopically enriched materials is documented by applying 26Mg enriched Mg implants in an animal model. Therefore, the spatial distribution of pin-Mg in bone and the pin-Mg migration and excretion in the organism could be monitored to better understand metal degradation as well as Mg turn over and excretion.


Asunto(s)
Implantes Absorbibles , Huesos/efectos de los fármacos , Implantes Experimentales , Magnesio/farmacología , Animales , Huesos/diagnóstico por imagen , Bovinos , Imagenología Tridimensional , Isótopos , Límite de Detección , Magnesio/sangre , Magnesio/orina , Ratas Sprague-Dawley , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA