Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(17)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37686468

RESUMEN

Both FoxO transcription factors and the circadian clock act on the interface of metabolism and cell cycle regulation and are important regulators of cellular stress and stem cell homeostasis. Importantly, FoxO3 preserves the adult neural stem cell population by regulating cell cycle and cellular metabolism and has been shown to regulate circadian rhythms in the liver. However, whether FoxO3 is a regulator of circadian rhythms in neural stem cells remains unknown. Here, we show that loss of FoxO3 disrupts circadian rhythmicity in cultures of neural stem cells, an effect that is mediated via regulation of Clock transcriptional levels. Using Rev-Erbα-VNP as a reporter, we then demonstrate that loss of FoxO3 does not disrupt circadian rhythmicity at the single cell level. A meta-analysis of published data revealed dynamic co-occupancy of multiple circadian clock components within FoxO3 regulatory regions, indicating that FoxO3 is a Clock-controlled gene. Finally, we examined proliferation in the hippocampus of FoxO3-deficient mice and found that loss of FoxO3 delayed the circadian phase of hippocampal proliferation, indicating that FoxO3 regulates correct timing of NSC proliferation. Taken together, our data suggest that FoxO3 is an integral part of circadian regulation of neural stem cell homeostasis.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Proteína Forkhead Box O3 , Células-Madre Neurales , Animales , Ratones , Ciclo Celular , División Celular , Relojes Circadianos/genética , Ritmo Circadiano/genética , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/fisiología
2.
Stem Cells ; 38(9): 1149-1158, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32442340

RESUMEN

Postnatal subventricular zone (pSVZ) stem and progenitor cell proliferation is regulated by several developmental signaling pathways such as Wnt/ß-catenin. However, the molecular regulation of Wnt function in the pSVZ is poorly understood. We previously showed that Wnt signaling is upregulated in an SVZ gliomagenesis in vivo model. As well, the pro-inflammatory molecule Galectin-3 (Gal-3) increases Wnt signaling in cancer cells and is expressed in the SVZ. Therefore, we asked if Gal-3 has a similar function on Wnt signaling in the pSVZ. We interrogated Wnt signaling using a signaling reporter as well as immunohistochemistry and showed that Wnt signaling predominates upstream in the pSVZ lineage but is downregulated in migrating neuroblasts. Biochemical analysis of SVZ cells, in vivo and in neurosphere stem/progenitor cells, showed that Gal-3 physically interacts with multiple forms of ß-catenin, which is a major downstream regulator of Wnt signaling. Functional analyses demonstrated, in vitro and in vivo, that Gal-3 knockdown increases Wnt signaling and conversely that Gal-3 OE inhibits Wnt/ß-catenin signaling in the pSVZ. This latter result suggested that Gal-3, which is consistently increased in brain injury, may decrease pSVZ proliferation. We showed that Gal-3 OE decreased proliferation without altering cell cycle re-entry and that it increased p27Kip1, a molecule which induces cell cycle exit. Our data uncover a novel regulator of Wnt signaling in the SVZ, Gal-3, which does so in a manner opposite to cancer.


Asunto(s)
Galectina 3/metabolismo , Ventrículos Laterales/metabolismo , Vía de Señalización Wnt , Animales , Ciclo Celular , Linaje de la Célula , Proliferación Celular , Regulación hacia Abajo , Ratones Endogámicos C57BL , Unión Proteica , Nicho de Células Madre , beta Catenina/metabolismo
3.
Glia ; 68(2): 435-450, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31626379

RESUMEN

Postnatal subventricular zone (SVZ) neural stem cells generate forebrain glia, namely astrocytes and oligodendrocytes. The cues necessary for this process are unclear, despite this phase of brain development being pivotal in forebrain gliogenesis. Galectin-3 (Gal-3) is increased in multiple brain pathologies and thereby regulates astrocyte proliferation and inflammation in injury. To study the function of Gal-3 in inflammation and gliogenesis, we carried out functional studies in mouse. We overexpressed Gal-3 with electroporation and using immunohistochemistry surprisingly found no inflammation in the healthy postnatal SVZ. This allowed investigation of inflammation-independent effects of Gal-3 on gliogenesis. Loss of Gal-3 function via knockdown or conditional knockout reduced gliogenesis, whereas Gal-3 overexpression increased it. Gal-3 overexpression also increased the percentage of striatal astrocytes generated by the SVZ but decreased the percentage of oligodendrocytes. These novel findings were further elaborated with multiple analyses demonstrating that Gal-3 binds to the bone morphogenetic protein receptor one alpha (BMPR1α) and increases bone morphogenetic protein (BMP) signaling. Conditional knockout of BMPR1α abolished the effect of Gal-3 overexpression on gliogenesis. Gain-of-function of Gal-3 is relevant in pathological conditions involving the human forebrain, which is particularly vulnerable to hypoxia/ischemia during perinatal gliogenesis. Hypoxic/ischemic injury induces astrogliosis, inflammation and cell death. We show that Gal-3 immunoreactivity was increased in the perinatal human SVZ and striatum after hypoxia/ischemia. Our findings thus show a novel inflammation-independent function for Gal-3; it is necessary for gliogenesis and when increased in expression can induce astrogenesis via BMP signaling.


Asunto(s)
Astrocitos/metabolismo , Galectina 3/metabolismo , Ventrículos Laterales/citología , Neuroglía/metabolismo , Animales , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Ventrículos Cerebrales/citología , Regulación de la Expresión Génica , Isquemia/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Oligodendroglía/metabolismo
4.
Prog Neurobiol ; 173: 41-53, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29886147

RESUMEN

Neural stem cells persist in the adult central nervous system as a continuing source of astrocytes, oligodendrocytes and neurons. Various signalling pathways and transcription factors actively maintain this population by regulating cell cycle entry and exit. Similarly, the circadian clock is interconnected with the cell cycle and actively maintains stem cell populations in various tissues. Here, we discuss emerging evidence for an important role of the circadian clock in neural stem cell maintenance. We propose that the NAD+-dependent deacetylase SIRT1 exerts control over the circadian clock in adult neural stem cell function to limit exhaustion of their population. Conversely, disruption of the circadian clock may compromise neural stem cell quiescence resulting in a premature decline of the neural stem cell population. As such, energy metabolism and the circadian clock converge in adult neural stem cell maintenance.


Asunto(s)
Células Madre Adultas/fisiología , Relojes Circadianos/fisiología , Células-Madre Neurales/fisiología , Animales , Proliferación Celular/fisiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA