Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
mSystems ; 4(6)2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31822597

RESUMEN

Nontuberculous mycobacterial infections caused by the opportunistic pathogen Mycobacterium avium subsp. hominissuis (MAH) are currently receiving renewed attention due to increased incidence combined with difficult treatment. Insights into the disease-causing mechanisms of this species have been hampered by difficulties in genetic manipulation of the bacteria. Here, we identified and sequenced a highly transformable, virulent MAH clinical isolate susceptible to high-density transposon mutagenesis, facilitating global gene disruption and subsequent investigation of MAH gene function. By transposon insertion sequencing (TnSeq) of this strain, we defined the MAH genome-wide genetic requirement for virulence and in vitro growth and organized ∼3,500 identified transposon mutants for hypothesis-driven research. The majority (96%) of the genes we identified as essential for MAH in vitro had a mutual ortholog in the related and highly virulent Mycobacterium tuberculosis (Mtb). However, passaging our library through a mouse model of infection revealed a substantial number (54% of total hits) of novel virulence genes. More than 97% of the MAH virulence genes had a mutual ortholog in Mtb Finally, we validated novel genes required for successful MAH infection: one encoding a probable major facilitator superfamily (MFS) transporter and another encoding a hypothetical protein located in the immediate vicinity of six other identified virulence genes. In summary, we provide new, fundamental insights into the underlying genetic requirement of MAH for growth and host infection.IMPORTANCE Pulmonary disease caused by nontuberculous mycobacteria is increasing worldwide. The majority of these infections are caused by the Mycobacterium avium complex (MAC), whereof >90% are due to Mycobacterium avium subsp. hominissuis (MAH). Treatment of MAH infections is currently difficult, with a combination of antibiotics given for at least 12 months. To control MAH by improved therapy, prevention, and diagnostics, we need to understand the underlying mechanisms of infection. Here, we provide crucial insights into MAH's global genetic requirements for growth and infection. We find that the vast majority of genes required for MAH growth and virulence (96% and 97%, respectively) have mutual orthologs in the tuberculosis-causing pathogen M. tuberculosis (Mtb). However, we also find growth and virulence genes specific to MAC species. Finally, we validate novel mycobacterial virulence factors that might serve as future drug targets for MAH-specific treatment or translate to broader treatment of related mycobacterial diseases.

2.
Sci Rep ; 9(1): 11394, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31388080

RESUMEN

Iron is vital for nearly all living organisms, but during infection, not readily available to pathogens. Infectious bacteria therefore depend on specialized mechanisms to survive when iron is limited. These mechanisms make attractive targets for new drugs. Here, by genome-wide phenotypic profiling, we identify and categorize mycobacterial genes required for low iron fitness. Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), can scavenge host-sequestered iron by high-affinity iron chelators called siderophores. We take advantage of siderophore redundancy within the non-pathogenic mycobacterial model organism M. smegmatis (Msmeg), to identify genes required for siderophore dependent and independent fitness when iron is low. In addition to genes with a potential function in recognition, transport or utilization of mycobacterial siderophores, we identify novel putative low iron survival strategies that are separate from siderophore systems. We also identify the Msmeg in vitro essential gene set, and find that 96% of all growth-required Msmeg genes have a mutual ortholog in Mtb. Of these again, nearly 90% are defined as required for growth in Mtb as well. Finally, we show that a novel, putative ferric iron ABC transporter contributes to low iron fitness in Msmeg, in a siderophore independent manner.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Proteínas Bacterianas/genética , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Sideróforos/metabolismo , Transportadoras de Casetes de Unión a ATP/antagonistas & inhibidores , Transportadoras de Casetes de Unión a ATP/metabolismo , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Desarrollo de Medicamentos , Técnicas de Silenciamiento del Gen , Genes Bacterianos/genética , Genes Esenciales/genética , Perfil Genético , Humanos , Hierro/metabolismo , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/metabolismo , Sideróforos/antagonistas & inhibidores , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
3.
PLoS One ; 10(9): e0134544, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26348349

RESUMEN

Conditional expression is a powerful tool to investigate the role of bacterial genes. Here, we adapt the Pseudomonas putida-derived positively regulated XylS/Pm expression system to control inducible gene expression in Mycobacterium smegmatis and Mycobacterium tuberculosis, the causative agent of human tuberculosis. By making simple changes to a Gram-negative broad-host-range XylS/Pm-regulated gene expression vector, we prove that it is possible to adapt this well-studied expression system to non-Gram-negative species. With the benzoic acid-derived inducer m-toluate, we achieve a robust, time- and dose-dependent reversible induction of Pm-mediated expression in mycobacteria, with low background expression levels. XylS/Pm is thus an important addition to existing mycobacterial expression tools, especially when low basal expression is of particular importance.


Asunto(s)
Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Pseudomonas putida/genética , Tuberculosis/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Ácido Benzoico/farmacología , Regulación Bacteriana de la Expresión Génica , Vectores Genéticos , Humanos , Mycobacterium smegmatis/patogenicidad , Mycobacterium tuberculosis/patogenicidad , Regiones Promotoras Genéticas , Transactivadores/biosíntesis , Transactivadores/genética , Tuberculosis/microbiología
4.
Antimicrob Agents Chemother ; 59(4): 2256-64, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25645825

RESUMEN

Efficient iron acquisition is crucial for the pathogenesis of Mycobacterium tuberculosis. Mycobacterial iron uptake and metabolism are therefore attractive targets for antitubercular drug development. Resistance mutations against a novel pyrazolopyrimidinone compound (PZP) that is active against M. tuberculosis have been identified within the gene cluster encoding the ESX-3 type VII secretion system. ESX-3 is required for mycobacterial iron acquisition through the mycobactin siderophore pathway, which could indicate that PZP restricts mycobacterial growth by targeting ESX-3 and thus iron uptake. Surprisingly, we show that ESX-3 is not the cellular target of the compound. We demonstrate that PZP indeed targets iron metabolism; however, we found that instead of inhibiting uptake of iron, PZP acts as an iron chelator, and we present evidence that the compound restricts mycobacterial growth by chelating intrabacterial iron. Thus, we have unraveled the unexpected mechanism of a novel antimycobacterial compound.


Asunto(s)
Antibacterianos/farmacología , Quelantes del Hierro/farmacología , Mycobacterium smegmatis/efectos de los fármacos , Pirazoles/farmacología , Pirimidinonas/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Ferrozina/metabolismo , Hierro/metabolismo , Pruebas de Sensibilidad Microbiana , Mycobacterium smegmatis/genética , Oxazoles/metabolismo , Pirazoles/síntesis química , Pirimidinonas/síntesis química , ARN Bacteriano/metabolismo , Sideróforos/metabolismo
5.
mBio ; 5(3): e01073-14, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24803520

RESUMEN

ABSTRACT The type VII secretion systems are conserved across mycobacterial species and in many Gram-positive bacteria. While the well-characterized Esx-1 pathway is required for the virulence of pathogenic mycobacteria and conjugation in the model organism Mycobacterium smegmatis, Esx-3 contributes to mycobactin-mediated iron acquisition in these bacteria. Here we show that several Esx-3 components are individually required for function under low-iron conditions but that at least one, the membrane-bound protease MycP3 of M. smegmatis, is partially expendable. All of the esx-3 mutants tested, including the ΔmycP3ms mutant, failed to export the native Esx-3 substrates EsxHms and EsxGms to quantifiable levels, as determined by targeted mass spectrometry. Although we were able to restore low-iron growth to the esx-3 mutants by genetic complementation, we found a wide range of complementation levels for protein export. Indeed, minute quantities of extracellular EsxHms and EsxGms were sufficient for iron acquisition under our experimental conditions. The apparent separation of Esx-3 function in iron acquisition from robust EsxGms and EsxHms secretion in the ΔmycP3ms mutant and in some of the complemented esx-3 mutants compels reexamination of the structure-function relationships for type VII secretion systems. IMPORTANCE Mycobacteria have several paralogous type VII secretion systems, Esx-1 through Esx-5. Whereas Esx-1 is required for pathogenic mycobacteria to grow within an infected host, Esx-3 is essential for growth in vitro. We and others have shown that Esx-3 is required for siderophore-mediated iron acquisition. In this work, we identify individual Esx-3 components that contribute to this process. As in the Esx-1 system, most mutations that abolish Esx-3 protein export also disrupt its function. Unexpectedly, however, ultrasensitive quantitation of Esx-3 secretion by multiple-reaction-monitoring mass spectrometry (MRM-MS) revealed that very low levels of export were sufficient for iron acquisition under similar conditions. Although protein export clearly contributes to type VII function, the relationship is not absolute.


Asunto(s)
Sistemas de Secreción Bacterianos , Hierro/metabolismo , Mycobacterium/genética , Mycobacterium/metabolismo , Sistemas de Secreción Bacterianos/genética , Orden Génico , Sitios Genéticos , Mycobacterium/crecimiento & desarrollo , Oxazoles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA