Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 33(39): e2102356, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34355435

RESUMEN

The chemical bond is one of the most powerful, yet much debated concepts in chemistry, explaining property trends in solids. Recently, a novel type of chemical bonding was identified in several higher chalcogenides, characterized by a unique property portfolio, unconventional bond breaking, and sharing of about one electron between adjacent atoms. This metavalent bond is a fundamental type of bonding in solids, besides covalent, ionic, and metallic bonding, raising the pertinent question as to whether there is a well-defined transition between metavalent and covalent bonds. Here, three different pseudo-binary lines, namely, GeTe1- x Sex , Sb2 Te3(1- x ) Se3 x , and Bi2-2 x Sb2 x Se3 , are studied, and a sudden change in several properties, including optical absorption ε2 (ω), optical dielectric constant ε∞ , Born effective charge Z*, electrical conductivity, as well as bond breaking behavior for a critical Se or Sb concentration, is evidenced. These findings provide a blueprint to experimentally explore the influence of metavalent bonding on attractive properties of phase-change materials and thermoelectrics. Particularly important is its impact on optical properties, which can be tailored by the amount of electrons shared between adjacent atoms. This correlation can be used to design optoelectronic materials and to explore systematic changes in chemical bonding with stoichiometry and atomic arrangement.

2.
Nano Lett ; 16(6): 3533-9, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27210240

RESUMEN

We show spin lifetimes of 12.6 ns and spin diffusion lengths as long as 30.5 µm in single layer graphene nonlocal spin transport devices at room temperature. This is accomplished by the fabrication of Co/MgO-electrodes on a Si/SiO2 substrate and the subsequent dry transfer of a graphene-hBN-stack on top of this electrode structure where a large hBN flake is needed in order to diminish the ingress of solvents along the hBN-to-substrate interface. Interestingly, long spin lifetimes are observed despite the fact that both conductive scanning force microscopy and contact resistance measurements reveal the existence of conducting pinholes throughout the MgO spin injection/detection barriers. Compared to previous devices, we observe an enhancement of the spin lifetime in single layer graphene by a factor of 6. We demonstrate that the spin lifetime does not depend on the contact resistance area products when comparing all bottom-up devices indicating that spin absorption at the contacts is not the predominant source for spin dephasing.

3.
Nano Lett ; 15(3): 1547-52, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25646665

RESUMEN

Many-body effects resulting from strong electron-electron and electron-phonon interactions play a significant role in graphene physics. We report on their manifestation in low B field magneto-phonon resonances in high-quality exfoliated single-layer and bilayer graphene encapsulated in hexagonal boron nitride. These resonances allow us to extract characteristic effective Fermi velocities, as high as 1.20 × 10(6) m/s, for the observed "dressed" Landau level transitions, as well as the broadening of the resonances, which increases with the Landau level index.

4.
Nano Lett ; 14(11): 6050-5, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25291305

RESUMEN

We present a new fabrication method of graphene spin-valve devices that yields enhanced spin and charge transport properties by improving both the electrode-to-graphene and graphene-to-substrate interface. First, we prepare Co/MgO spin injection electrodes onto Si(++)/SiO2. Thereafter, we mechanically transfer a graphene-hBN heterostructure onto the prepatterned electrodes. We show that room temperature spin transport in single-, bi-, and trilayer graphene devices exhibit nanosecond spin lifetimes with spin diffusion lengths reaching 10 µm combined with carrier mobilities exceeding 20,000 cm(2)/(V s).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA