Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev B ; 1012020.
Artículo en Inglés | MEDLINE | ID: mdl-38616972

RESUMEN

Recently it was discovered that van der Waals-bonded magnetic materials retain long range magnetic ordering down to a single layer, opening many avenues in fundamental physics and potential applications of these fascinating materials. One such material is FePS3, a large spin (S=2) Mott insulator where the Fe atoms form a honeycomb lattice. In the bulk, FePS3 has been shown to be a quasi-two-dimensional-Ising antiferromagnet, with additional features in the Raman spectra emerging below the Néel temperature (TN) of approximately 120 K. Using magneto-Raman spectroscopy as an optical probe of magnetic structure, we show that one of these Raman-active modes in the magnetically ordered state is actually a magnon with a frequency of ≈3.7 THz (122 cm-1). Contrary to previous work, which interpreted this feature as a phonon, our Raman data shows the expected frequency shifting and splitting of the magnon as a function of temperature and magnetic field, respectively, where we determine the g-factor to be ≈2. In addition, the symmetry behavior of the magnon is studied by polarization-dependent Raman spectroscopy and explained using the magnetic point group of FePS3.

2.
Materials (Basel) ; 11(6)2018 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-29843364

RESUMEN

Thermoelectric devices, which allow direct conversion of heat into electrical energy, require materials with improved figures of merit ( z T ) in order to ensure widespread adoption. Several techniques have been proposed to increase the z T of known thermoelectric materials through the reduction of thermal conductivity, including heavy atom substitution, grain size reduction and inclusion of a semicoherent second phase. The goal in these approaches is to reduce thermal conductivity through phonon scattering without modifying the electronic properties. In this work, we demonstrate that Ni interstitials in the half-Heusler thermoelectric TiNiSn can be created and controlled in order to improve physical properties. Ni interstitials in TiNi 1.1 Sn are not thermodynamically stable and, instead, are kinetically trapped using appropriate heat treatments. The Ni interstitials, which act as point defect phonon scattering centers and modify the electronic states near the Fermi level, result in reduced thermal conductivity and enhance the Seebeck coefficient. The best materials tested here, created from controlled heat treatments of TiNi 1.1 Sn samples, display z T = 0.26 at 300 K, the largest value reported for compounds in the Ti⁻Ni⁻Sn family.

3.
Phys Chem Chem Phys ; 15(18): 6990-7, 2013 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-23552642

RESUMEN

Half-Heusler thermoelectrics offer the possibility to choose from a variety of non-toxic and earth-abundant elements. TiNiSn is of particular interest and - with its relatively high electrical conductivity and Seebeck coefficient - allows for optimization of its thermoelectric figure of merit, reaching values of up to 1 in heavily-doped and/or phase-segregated systems. In this contribution, we used an energy- and time-efficient process involving solid-state preparation in a commercial microwave oven and a fast consolidation technique, Spark Plasma Sintering, to prepare a series of Ni-rich TiNi1+xSn with small deviations from the half-Heusler composition. Spark Plasma Sintering plays an important role in the process by being a part of the synthesis of the material rather than solely a densification technique. Synchrotron powder X-ray diffraction and microprobe data confirm the presence of a secondary TiNi2Sn full-Heusler phase within the half-Heusler matrix. We observe a clear correlation between the amount of full-Heusler phase and the lattice thermal conductivity of the samples, resulting in decreasing total thermal conductivity with increasing TiNi2Sn fraction. This trend shows that phonons are scattered effectively as a result of the microstructure of the materials with full-Heusler inclusions in the size range of microns to tens of microns. The best performing samples with around 5% of TiNi2Sn phase exhibit maximum figures of merit of almost 0.6 between 750 K and 800 K which is an increase of ca. 35% compared to the zT of the parent compound TiNiSn.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA