Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 328: 138520, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36996922

RESUMEN

Heavy metal pollution is increasing, and rare earth elements (REE) play an important role in the environmental impact of heavy metals. Mixed heavy metal pollution is a major issue with complex effects. Despite substantial research on single heavy metal pollution, relatively few studies have focused on pollution from rare earth heavy metal composites. We studied the effects of different concentrations of Ce-Pb on the antioxidant activity in root tip cells and biomass of Chinese cabbage. We also used the integrated biomarker response (IBR) to evaluate the toxic effects of rare earth-heavy metal pollution on Chinese cabbage. We used programmed cell death (PCD) for the first time to reflect the toxicological effects of heavy metals and rare earths and studied the interaction between Ce and Pb in root tip cells in depth. Our results showed that Ce-Pb compound pollution can induce PCD in the root cells of Chinese cabbage, and the toxicity of compound pollutants is greater than that of single pollutants. Our analyses also provide the first evidence that Ce and Pb exert interaction effects in the cell. Ce induces Pb transfer in plant cells. The Pb content in the cell wall decreases from 58% to 45%. Additionally, Pb induced Ce valence changes. Ce (III) decreased from 50% to 43%, while Ce (IV) increased from 50% to 57%, directly resulting in PCD in the roots of Chinese cabbage. These findings improve our understanding of the harmful effects of compound pollution with rare earth metals and heavy metals on plants.


Asunto(s)
Brassica , Contaminantes Ambientales , Metales Pesados , Metales de Tierras Raras , Contaminantes del Suelo , Plomo/análisis , Meristema , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Metales de Tierras Raras/análisis , Contaminantes Ambientales/análisis , Brassica/metabolismo , Apoptosis , Suelo
2.
Chemosphere ; 320: 138011, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36731677

RESUMEN

Dibutyl phthalate (DBP) is an organic pollutant frequently detected in soil, and is a reproductive poison that harms animals both before and after birth and has mutagenic, teratogenic, and carcinogenic effects. DBP removal from farmland has been the subject of extensive research in recent years. Efficient DBP degrading bacterial strains were screened in the laboratory. GFP (Green fluorescent protein) labeled degradation strain GFP-DNB-S1 was analyzed for its activity and dynamics. Using sodium alginate (SA) and nano-hydroxyapatite (n-HAP) as carrier materials and CaCl2 as a cross-linking agent, the immobilized microbial agent n-HAP/SA + DNB-S1 was prepared by embedding cross-linking immobilization technology to study the remediation effect of DBP contaminated soil. The best formation effect of immobilized materials (n-HAP/SA) was found when the SA to n-HAP ratio was 3:2. When compared to single SA immobilized bacteria, n-HAP/SA immobilized bacteria improved the surface roughness and porosity of the microspheres. After 70 days, LED light revealed that the immobilized bacteria's GFP green fluorescent protein expression was stable. At 70 days, the initial DBP concentration of 500 mg ∙ L-1 degraded at a rate of 69.9%. The degrading bacteria had no effect on DBP degradation before and after being labeled with GFP. The n-HAP/SA immobilized bacteria offered a better living environment for microorganisms due to their rougher surface and a greater number of pores. This protected the microorganisms and increased the efficiency of DBP degradation. When the concentration of DBP in contaminated soil was set to 20 mg ∙ kg-1 and the n-HAP/SA + DNB-S1 immobilized bacterial agent was applied to the soil, the rate of DBP degradation was determined to be 93.34%. The degradation process followed First-order degradation kinetics, which improved the physical and chemical properties of the soil as well as its fertility.


Asunto(s)
Dibutil Ftalato , Contaminantes del Suelo , Dibutil Ftalato/metabolismo , Biodegradación Ambiental , Proteínas Fluorescentes Verdes/metabolismo , Bacterias/metabolismo , Suelo , Contaminantes del Suelo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA