Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(32): eadl5722, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39110798

RESUMEN

Dendrite pathology and synaptic loss result in neural circuit dysfunction, a common feature of neurodegenerative diseases. There is a lack of strategies that target dendritic and synaptic regeneration to promote neurorecovery. We show that daily human recombinant insulin eye drops stimulate retinal ganglion cell (RGC) dendrite and synapse regeneration during ocular hypertension, a risk factor to develop glaucoma. We demonstrate that the ribosomal protein p70S6 kinase (S6K) is essential for insulin-dependent dendritic regrowth. Furthermore, S6K phosphorylation of the stress-activated protein kinase-interacting protein 1 (SIN1), a link between the mammalian target of rapamycin complexes 1 and 2 (mTORC1/2), is required for insulin-induced dendritic regeneration. Using two-photon microscopy live retinal imaging, we show that insulin rescues single-RGC light-evoked calcium (Ca2+) dynamics. We further demonstrate that insulin enhances neuronal survival and retina-brain connectivity leading to improved optomotor reflex-elicited behaviors. Our data support that insulin is a compelling pro-regenerative strategy with potential clinical implications for the treatment and management of glaucoma.


Asunto(s)
Glaucoma , Insulina , Células Ganglionares de la Retina , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/efectos de los fármacos , Glaucoma/tratamiento farmacológico , Glaucoma/metabolismo , Glaucoma/patología , Insulina/metabolismo , Insulina/farmacología , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Dendritas/metabolismo , Dendritas/efectos de los fármacos , Sinapsis/metabolismo , Sinapsis/efectos de los fármacos , Calcio/metabolismo
2.
Cell Rep ; 40(11): 111324, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36103832

RESUMEN

Deficits in mitochondrial transport are a common feature of neurodegenerative diseases. We investigated whether loss of components of the mitochondrial transport machinery impinge directly on metabolic stress, neuronal death, and circuit dysfunction. Using multiphoton microscope live imaging, we showed that ocular hypertension, a major risk factor in glaucoma, disrupts mitochondria anterograde axonal transport leading to energy decline in vulnerable neurons. Gene- and protein-expression analysis revealed loss of the adaptor disrupted in schizophrenia 1 (Disc1) in retinal neurons subjected to high intraocular pressure. Disc1 gene delivery was sufficient to rescue anterograde transport and replenish axonal mitochondria. A genetically encoded ATP sensor combined with longitudinal live imaging showed that Disc1 supplementation increased ATP production in stressed neurons. Disc1 gene therapy promotes neuronal survival, reverses abnormal single-cell calcium dynamics, and restores visual responses. Our study demonstrates that enhancing anterograde mitochondrial transport is an effective strategy to alleviate metabolic stress and neurodegeneration.


Asunto(s)
Transporte Axonal , Proteínas del Tejido Nervioso , Adenosina Trifosfato/metabolismo , Transporte Axonal/fisiología , Suplementos Dietéticos , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35135877

RESUMEN

Reduced blood flow and impaired neurovascular coupling are recognized features of glaucoma, the leading cause of irreversible blindness worldwide, but the mechanisms underlying these defects are unknown. Retinal pericytes regulate microcirculatory blood flow and coordinate neurovascular coupling through interpericyte tunneling nanotubes (IP-TNTs). Using two-photon microscope live imaging of the mouse retina, we found reduced capillary diameter and impaired blood flow at pericyte locations in eyes with high intraocular pressure, the most important risk factor to develop glaucoma. We show that IP-TNTs are structurally and functionally damaged by ocular hypertension, a response that disrupted light-evoked neurovascular coupling. Pericyte-specific inhibition of excessive Ca2+ influx rescued hemodynamic responses, protected IP-TNTs and neurovascular coupling, and enhanced retinal neuronal function as well as survival in glaucomatous retinas. Our study identifies pericytes and IP-TNTs as potential therapeutic targets to counter ocular pressure-related microvascular deficits, and provides preclinical proof of concept that strategies aimed to restore intrapericyte calcium homeostasis rescue autoregulatory blood flow and prevent neuronal dysfunction.


Asunto(s)
Estructuras de la Membrana Celular/fisiología , Glaucoma/patología , Pericitos/fisiología , Retina/citología , Retina/patología , Animales , Antígenos , Calcio/metabolismo , Femenino , Eliminación de Gen , Regulación de la Expresión Génica , Glaucoma/etiología , Fenómenos Magnéticos , Masculino , Ratones , Microesferas , Nanotubos , Regiones Promotoras Genéticas , Proteoglicanos , Vasos Retinianos/patología , Técnicas de Cultivo de Tejidos
4.
Mol Neurodegener ; 16(1): 43, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34187514

RESUMEN

BACKGROUND: The maintenance of complex dendritic arbors and synaptic transmission are processes that require a substantial amount of energy. Bioenergetic decline is a prominent feature of chronic neurodegenerative diseases, yet the signaling mechanisms that link energy stress with neuronal dysfunction are poorly understood. Recent work has implicated energy deficits in glaucoma, and retinal ganglion cell (RGC) dendritic pathology and synapse disassembly are key features of ocular hypertension damage. RESULTS: We show that adenosine monophosphate-activated protein kinase (AMPK), a conserved energy biosensor, is strongly activated in RGC from mice with ocular hypertension and patients with primary open angle glaucoma. Our data demonstrate that AMPK triggers RGC dendrite retraction and synapse elimination. We show that the harmful effect of AMPK is exerted through inhibition of the mammalian target of rapamycin complex 1 (mTORC1). Attenuation of AMPK activity restores mTORC1 function and rescues dendrites and synaptic contacts. Strikingly, AMPK depletion promotes recovery of light-evoked retinal responses, improves axonal transport, and extends RGC survival. CONCLUSIONS: This study identifies AMPK as a critical nexus between bioenergetic decline and RGC dysfunction during pressure-induced stress, and highlights the importance of targeting energy homeostasis in glaucoma and other neurodegenerative diseases.


Asunto(s)
Adenilato Quinasa/metabolismo , Glaucoma de Ángulo Abierto/metabolismo , Glaucoma de Ángulo Abierto/patología , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Animales , Dendritas/patología , Activación Enzimática/fisiología , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Sinapsis/patología
5.
Nature ; 585(7823): 91-95, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32788726

RESUMEN

Signalling between cells of the neurovascular unit, or neurovascular coupling, is essential to match local blood flow with neuronal activity. Pericytes interact with endothelial cells and extend processes that wrap capillaries, covering up to 90% of their surface area1,2. Pericytes are candidates to regulate microcirculatory blood flow because they are strategically positioned along capillaries, contain contractile proteins and respond rapidly to neuronal stimulation3,4, but whether they synchronize microvascular dynamics and neurovascular coupling within a capillary network was unknown. Here we identify nanotube-like processes that connect two bona fide pericytes on separate capillary systems, forming a functional network in the mouse retina, which we named interpericyte tunnelling nanotubes (IP-TNTs). We provide evidence that these (i) have an open-ended proximal side and a closed-ended terminal (end-foot) that connects with distal pericyte processes via gap junctions, (ii) carry organelles including mitochondria, which can travel along these processes, and (iii) serve as a conduit for intercellular Ca2+ waves, thus mediating communication between pericytes. Using two-photon microscope live imaging, we demonstrate that retinal pericytes rely on IP-TNTs to control local neurovascular coupling and coordinate light-evoked responses between adjacent capillaries. IP-TNT damage following ablation or ischaemia disrupts intercellular Ca2+ waves, impairing blood flow regulation and neurovascular coupling. Notably, pharmacological blockade of Ca2+ influx preserves IP-TNTs, rescues light-evoked capillary responses and restores blood flow after reperfusion. Our study thus defines IP-TNTs and characterizes their critical role in regulating neurovascular coupling in the living retina under both physiological and pathological conditions.


Asunto(s)
Nanotubos , Acoplamiento Neurovascular , Pericitos/metabolismo , Animales , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Calcio/metabolismo , Señalización del Calcio , Capilares/fisiopatología , Capilares/efectos de la radiación , Comunicación Celular , Femenino , Uniones Comunicantes/metabolismo , Hemodinámica , Masculino , Ratones , Mitocondrias/metabolismo , Acoplamiento Neurovascular/fisiología , Pericitos/citología , Pericitos/patología , Retina/citología , Retina/patología
6.
Mol Neurodegener ; 12(1): 58, 2017 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-28774322

RESUMEN

BACKGROUND: Tau is an axon-enriched protein that binds to and stabilizes microtubules, and hence plays a crucial role in neuronal function. In Alzheimer's disease (AD), pathological tau accumulation correlates with cognitive decline. Substantial visual deficits are found in individuals affected by AD including a preferential loss of retinal ganglion cells (RGCs), the neurons that convey visual information from the retina to the brain. At present, however, the mechanisms that underlie vision changes in these patients are poorly understood. Here, we asked whether tau plays a role in early retinal pathology and neuronal dysfunction in AD. METHODS: Alterations in tau protein and gene expression, phosphorylation, and localization were investigated by western blots, qPCR, and immunohistochemistry in the retina and visual pathways of triple transgenic mice (3xTg) harboring mutations in the genes encoding presenilin 1 (PS1M146 V), amyloid precursor protein (APPSwe), and tau (MAPTP301L). Anterograde axonal transport was assessed by intraocular injection of the cholera toxin beta subunit followed by quantification of tracer accumulation in the contralateral superior colliculus. RGC survival was analyzed on whole-mounted retinas using cell-specific markers. Reduction of tau expression was achieved following intravitreal injection of targeted siRNA. RESULTS: Our data demonstrate an age-related increase in endogenous retinal tau characterized by epitope-specific hypo- and hyper-phosphorylation in 3xTg mice. Retinal tau accumulation was observed as early as three months of age, prior to the reported onset of behavioral deficits, and preceded tau aggregation in the brain. Intriguingly, tau build up occurred in RGC soma and dendrites, while tau in RGC axons in the optic nerve was depleted. Tau phosphorylation changes and missorting correlated with substantial defects in anterograde axonal transport that preceded RGC death. Importantly, targeted siRNA-mediated knockdown of endogenous tau improved anterograde transport along RGC axons. CONCLUSIONS: Our study reveals profound tau pathology in the visual system leading to early retinal neuron damage in a mouse model of AD. Importantly, we show that tau accumulation promotes anterograde axonal transport impairment in vivo, and identify this response as an early feature of neuronal dysfunction that precedes cell death in the AD retina. These findings provide the first proof-of-concept that a global strategy to reduce tau accumulation is beneficial to improve axonal transport and mitigate functional deficits in AD and tauopathies.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Transporte Axonal/fisiología , Retina/metabolismo , Proteínas tau/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones Transgénicos , Células Ganglionares de la Retina/metabolismo , Tauopatías/metabolismo , Tauopatías/patología
7.
Brain Struct Funct ; 219(4): 1493-507, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23700106

RESUMEN

The cholinergic afferents from the basal forebrain to the primary visual cortex play a key role in visual attention and cortical plasticity. These afferent fibers modulate acute and long-term responses of visual neurons to specific stimuli. The present study evaluates whether this cholinergic modulation of visual neurons results in cortical activity and visual perception changes. Awake adult rats were exposed repeatedly for 2 weeks to an orientation-specific grating with or without coupling this visual stimulation to an electrical stimulation of the basal forebrain. The visual acuity, as measured using a visual water maze before and after the exposure to the orientation-specific grating, was increased in the group of trained rats with simultaneous basal forebrain/visual stimulation. The increase in visual acuity was not observed when visual training or basal forebrain stimulation was performed separately or when cholinergic fibers were selectively lesioned prior to the visual stimulation. The visual evoked potentials show a long-lasting increase in cortical reactivity of the primary visual cortex after coupled visual/cholinergic stimulation, as well as c-Fos immunoreactivity of both pyramidal and GABAergic interneuron. These findings demonstrate that when coupled with visual training, the cholinergic system improves visual performance for the trained orientation probably through enhancement of attentional processes and cortical plasticity in V1 related to the ratio of excitatory/inhibitory inputs. This study opens the possibility of establishing efficient rehabilitation strategies for facilitating visual capacity.


Asunto(s)
Prosencéfalo Basal/fisiología , Potenciales Evocados Visuales/fisiología , Orientación/fisiología , Agudeza Visual/fisiología , Corteza Visual/fisiología , Percepción Visual/fisiología , Animales , Atención/fisiología , Estimulación Eléctrica , Neuronas/metabolismo , Estimulación Luminosa , Práctica Psicológica , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas
8.
PLoS One ; 7(3): e33864, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22470485

RESUMEN

PURPOSE: Kinin B(1) receptor (B(1)R) is upregulated in retina of Streptozotocin (STZ)-diabetic rats and contributes to vasodilation of retinal microvessels and breakdown of the blood-retinal barrier. Systemic treatment with B(1)R antagonists reversed the increased retinal plasma extravasation in STZ rats. The present study aims at determining whether ocular application of a water soluble B(1)R antagonist could reverse diabetes-induced retinal inflammation and oxidative stress. METHODS: Wistar rats were made diabetic with STZ (65 mg/kg, i.p.) and 7 days later, they received one eye drop application of LF22-0542 (1% in saline) twice a day for a 7 day-period. The impact was determined on retinal vascular permeability (Evans blue exudation), leukostasis (leukocyte infiltration using Fluorescein-isothiocyanate (FITC)-coupled Concanavalin A lectin), retinal mRNA levels (by qRT-PCR) of inflammatory (B(1)R, iNOS, COX-2, ICAM-1, VEGF-A, VEGF receptor type 2, IL-1ß and HIF-1α) and anti-inflammatory (B(2)R, eNOS) markers and retinal level of superoxide anion (dihydroethidium staining). RESULTS: Retinal plasma extravasation, leukostasis and mRNA levels of B(1)R, iNOS, COX-2, VEGF receptor type 2, IL-1ß and HIF-1α were significantly increased in diabetic retinae compared to control rats. All these abnormalities were reversed to control values in diabetic rats treated with LF22-0542. B(1)R antagonist also significantly inhibited the increased production of superoxide anion in diabetic retinae. CONCLUSION: B(1)R displays a pathological role in the early stage of diabetes by increasing oxidative stress and pro-inflammatory mediators involved in retinal vascular alterations. Hence, topical application of kinin B(1)R antagonist appears a highly promising novel approach for the treatment of diabetic retinopathy.


Asunto(s)
Acrilamidas/farmacología , Antiinflamatorios/farmacología , Antagonistas del Receptor de Bradiquinina B1 , Diabetes Mellitus Experimental/tratamiento farmacológico , Fumaratos/farmacología , Estrés Oxidativo/efectos de los fármacos , Acrilamidas/uso terapéutico , Animales , Antiinflamatorios/uso terapéutico , Permeabilidad de la Membrana Celular/efectos de los fármacos , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Fumaratos/uso terapéutico , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inflamación/tratamiento farmacológico , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Leucostasis/patología , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Receptor de Bradiquinina B1/genética , Receptor de Bradiquinina B1/metabolismo , Retina/efectos de los fármacos , Retina/metabolismo , Estreptozocina , Superóxidos/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA