RESUMEN
Objective: Evaluate the effect of a multidrug solution, adopted by a referral hospital for cancer to control and treat chemotherapy-induced oral mucositis in rats. Methods: Oral mucositis (OM) was induced by 5-Fluorouracil (5-FU), and the animals were treated with saline (nâ¯=â¯8, G1), 0.12% chlorhexidine (nâ¯=â¯8, G2); and multidrug solution (nâ¯=â¯8, G3). The animals were submitted to clinical and histological analysis of the lesion using mucosal fragments. The animals' food consumption during treatment was also evaluated. Results: Clinical improvement (pâ¯<â¯0.05) was observed in the groups treated with the multidrug solution and 0.12% chlorhexidine digluconate. In G2 and G3, there was a prevalence of reepithelialization covering <50% of the lesion. Evaluation of the inflammatory infiltrate indicated that the G1 treatment permitted an intense inflammatory response in all animals, yet this evaluation parameter was moderate in groups G2 and G3. The G3 group (pâ¯<â¯0.05) presented higher food consumption than the other groups. Conclusions: The multidrug solution improved the clinical and histological parameters of the chemotherapy-induced oral mucositis, as well as promoted an increase in food intake.
RESUMEN
Spirulina platensis, an important source of bioactive compounds, is a multicellular, filamentous cyanobacterium rich in high-quality proteins, vitamins, minerals, and antioxidants. Due to its nutrient composition, the alga is considered a complete food and is recognized for its anti-inflammatory, antioxidant, antiobesity, and reproprotective effects. All of which are important for prevention and treatment of organic and metabolic disorders such as obesity and erectile dysfunction. The aim of this study was to investigate the modulatory role of Spirulina platensis food supplementation and the mechanisms of action involved in reversing the damage caused by a hypercaloric diet on the erectile function of rats. The animals were divided into a standard diet group (SD, n = 5); a hypercaloric diet group (HCD, n = 5); a hypercaloric diet group supplemented with S. platensis at doses of 25 (HCD+SP25, n = 5), 50 (HCD+SP50, n = 5), and 100 mg/kg (HCD+SP100, n = 5); and a hypercaloric diet group subsequently fed a standard diet (HCD+SD, n = 5). In the rats fed a hypercaloric diet, dietary supplementation with S. platensis effectively increased the number of erections while decreasing latency to initiate penile erection. Additionally, S. platensis increases NO bioavailability, reduces inflammation by reducing the release of contractile prostanoids, enhances the relaxation effect promoted by acetylcholine (ACh), restores contractile reactivity damage and cavernous relaxation, reduces reactive oxygen species (ROS), and increases cavernous total antioxidant capacity (TAC). Food supplementation with S. platensis thus restores erectile function in obese rats, reduces production of contractile prostanoids, reduces oxidative stress, and increases NO bioavailability. Food supplementation with S. platensis thus emerges as a promising new therapeutic alternative for the treatment of erectile dysfunction as induced by obesity.