RESUMEN
The developmental origins of healthy and disease (DOHaD) concept has demonstrated a higher rate of chronic diseases in the adult population of individuals whose mothers experienced severe maternal protein restriction (MPR). Using proteomic and in silico analyses, we investigated the lung proteomic profile of young and aged rats exposed to MPR during pregnancy and lactation. Our results demonstrated that MPR lead to structural and immune system pathways changes, and this outcome is coupled with a rise in the PI3k-AKT-mTOR signaling pathway, with increased MMP-2 activity, and CD8 expression in the early life, with long-term effects with aging. This led to the identification of commonly or inversely differentially expressed targets in early life and aging, revealing dysregulated pathways related to the immune system, stress, muscle contraction, tight junctions, and hemostasis. We identified three miRNAs (miR-378a-3p, miR-378a-5p, let-7a-5p) that regulate four proteins (ACTN4, PPIA, HSPA5, CALM1) as probable epigenetic lung marks generated by MPR. In conclusion, MPR impacts the lungs early in life, increasing the possibility of long-lasting negative outcomes for respiratory disorders in the offspring.
Asunto(s)
Pulmón , MicroARNs , Proteómica , Animales , Femenino , Pulmón/metabolismo , Masculino , Proteómica/métodos , Embarazo , MicroARNs/genética , MicroARNs/metabolismo , Ratas , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/genética , Dieta con Restricción de Proteínas , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Longevidad/genética , Ratas Wistar , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteoma/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Envejecimiento/metabolismo , Envejecimiento/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/genéticaRESUMEN
This study investigated the impact of maternal protein restriction (MPR) and early postnatal sugar consumption (SUG) on the liver health of adult male descendant rats. Male offspring of mothers fed a normal protein diet (NPD) or a low protein diet (LPD) were divided into four groups: Control (CTR), Sugar Control (CTR + SUG), LPD during gestation and lactation (GLLP), and LPD with sugar (GLLP + SUG). Sugar consumption (10% glucose diluted in water) began after weaning on day 21 (PND 21), and at 90 days (PND 90), rats were sacrificed for analysis. Sugar intake reduced food intake and increased water consumption in CTR + SUG and GLLP + SUG compared to CTR and GLLP. GLLP and GLLP + SUG groups showed lower body weight and total and retroperitoneal fat compared to CTR and CTR + SUG. CTR + SUG and GLLP + SUG groups exhibited hepatocyte vacuolization associated with increased hepatic glycogen content compared to CTR and GLLP. Hepatic catalase activity increased in GLLP compared to CTR. Proteomic analysis identified 223 differentially expressed proteins (DEPs) among experimental groups. While in the GLLP group, the DEPs enriched molecular pathways related to cellular stress, glycogen metabolic pathways were enriched in the GLLP + SUG and CTR + SUG groups. The association of sugar consumption amplifies the effects of MPR, deregulating molecular mechanisms related to metabolism and the antioxidant system.
Asunto(s)
Dieta con Restricción de Proteínas , Hígado , Proteómica , Animales , Hígado/metabolismo , Hígado/efectos de los fármacos , Masculino , Femenino , Dieta con Restricción de Proteínas/efectos adversos , Embarazo , Proteómica/métodos , Ratas , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/patología , Redes y Vías Metabólicas/efectos de los fármacos , Proteoma/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos , Ratas Wistar , Animales Recién Nacidos , Lactancia , Peso Corporal/efectos de los fármacosRESUMEN
Considering the importance of alternative methodologies to animal experimentation, we propose an organoid-based biological model for in vitro blood vessel generation, achieved through co-culturing endothelial and vascular smooth muscle cells (VSMCs). Initially, the organoids underwent comprehensive characterization, revealing VSMCs (α-SMA + cells) at the periphery and endothelial cells (CD31+ cells) at the core. Additionally, ephrin B2 and ephrin B4, genes implicated in arterial and venous formation respectively, were used to validate the obtained organoid. Moreover, the data indicates exclusive HIF-1α expression in VSMCs, identified through various methodologies. Subsequently, we tested the hypothesis that the generated blood vessels have the capacity to modulate the osteogenic phenotype, demonstrating the ability of HIF-1α to promote osteogenic signals, primarily by influencing Runx2 expression. Overall, this study underscores that the methodology employed to create blood vessel organoids establishes an experimental framework capable of producing a 3D culture model of both venous and arterial endothelial tissues. This model effectively guides morphogenesis from mesenchymal stem cells through paracrine signaling, ultimately leading to an osteogenic acquisition phenotype, with the dynamic involvement of HIF-1α.
Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia , Músculo Liso Vascular , Miocitos del Músculo Liso , Organoides , Osteogénesis , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Osteogénesis/genética , Organoides/metabolismo , Organoides/citología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/citología , Células Cultivadas , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/citología , Vasos Sanguíneos/crecimiento & desarrollo , Técnicas de Cocultivo/métodos , Diferenciación Celular , Células Endoteliales/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citologíaRESUMEN
Maternal malnutrition can alter developmental biology, programming health and disease in offspring. The increase in sugar consumption during the peripubertal period, a worldwide concern, also affects health through adulthood. Studies have shown that maternal exposure to a low protein diet (LPD) is associated with an increase in prostate disease with aging. However, the combined effects of maternal LPD and early postnatal sugar consumption on offspring prostate disorders were not investigated. The effects on aging were evaluated using a maternal gestational model with lactational LPD (6% protein) and sugar consumption (10%) from postnatal day (PND) 21-90, associating the consequences on ventral prostate (VP) rats morphophysiology on PND540. An increase was shown in mast cells and in the VP of the CTR + SUG and Gestational and Lactational Low Protein (GLLP) groups. In GLLP + SUG, a significant increase was shown in TGF-ß1 expression in both the systemic and intra-prostatic forms, and SMAD2/3p had increased. The study identified maternal LPD and sugar consumption as risk factors for prostatic homeostasis in senility, activating the TGFß1-SMAD2/3 pathway, a signaling pathway with potential markers for prostatic disorders.
Asunto(s)
Desnutrición , Fenómenos Fisiologicos Nutricionales Maternos , Efectos Tardíos de la Exposición Prenatal , Próstata , Enfermedades de la Próstata , Animales , Masculino , Femenino , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Enfermedades de la Próstata/patología , Enfermedades de la Próstata/etiología , Enfermedades de la Próstata/metabolismo , Desnutrición/complicaciones , Próstata/metabolismo , Próstata/patología , Ratas , Inflamación/patología , Inflamación/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Dieta con Restricción de Proteínas/efectos adversos , Proteína Smad2/metabolismo , Ratas Wistar , Proteína smad3/metabolismo , Proteína smad3/genética , Transducción de Señal , Animales Recién Nacidos , Mastocitos/metabolismoRESUMEN
Ovarian cancer (OC) is the most lethal gynecologic malignancy, and melatonin has shown various antitumor properties. Herein, we investigated the influence of melatonin therapy on energy metabolism and mitochondrial integrity in SKOV-3 cells and tested whether its effects depended on MT1 receptor activation. SKOV-3 cells were exposed to different melatonin concentrations, and experimental groups were divided as to the presence of MT1 receptors (melatonin groups) or receptor absence by RNAi silencing (siRNA MT1+melatonin). Intracellular melatonin levels increased after treatment with melatonin independent of the MT1. The mitochondrial membrane potential of SKOV-3 cells decreased in the group treated with the highest melatonin concentration. Melatonin reduced cellular glucose consumption, while MT1 knockdown increased its consumption. Interconversion of lactate to pyruvate increased after treatment with melatonin and was remarkable in siRNA MT1 groups. Moreover, lactate dehydrogenase activity decreased with melatonin and increased after MT1 silencing at all concentrations. The UCSC XenaBrowser tool showed a positive correlation between the human ASMTL gene and the ATP synthase genes, succinate dehydrogenase gene (SDHD), and pyruvate dehydrogenase genes (PDHA and PDHB). We conclude that melatonin changes the glycolytic phenotype and mitochondrial integrity of SKOV-3 cells independent of the MT1 receptor, thus decreasing the survival advantage of OC cells.
Asunto(s)
Melatonina , Neoplasias Ováricas , Receptor de Melatonina MT1 , Carcinoma Epitelial de Ovario , Femenino , Humanos , Melatonina/metabolismo , Melatonina/farmacología , Potencial de la Membrana Mitocondrial , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Piruvatos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptor de Melatonina MT1/genética , Receptor de Melatonina MT1/metabolismoRESUMEN
The possibility of chemical contamination is an important issue to consider when designing a cell therapy strategy. Both bisphenol A (BPA) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are among the most environmentally relevant endocrine disrupting chemicals (EDCs, compounds with a high affinity for adipose tissue) recently studied. Adipose-derived stem cells (ASCs) are mesenchymal stromal cells (MSCs) obtained from adipose tissue widely used in regenerative medicine to prevent and treat diseases in several tissues and organs. Although the experimental use of tissue-engineered constructs requires careful analysis for approval and implantation, there has been a recent increase in the number of approved clinical trials for this promising strategy. This study aimed to evaluate cell viability, apoptosis, DNA damage, and the adipogenic or osteogenic differentiation potential of rat adipose-derived stem cells (rASCs) exposed to previously established non-cytotoxic doses of BPA and TCDD in vitro. Results demonstrated that 10 µM of BPA and 10 nM of TCDD were able to significantly reduce cell viability, while all exposure levels resulted in DNA damage, although did not increase the apoptosis rate. According to the analysis of adipogenic differentiation, 1 µM of BPA induced the significant formation of oil droplets, suggesting an increased adipocyte differentiation, while both 10 µM of BPA and 10 nM of TCDD decreased adipocyte differentiation. Osteogenic differentiation did not differ among the treatments. As such, BPA and TCDD in the concentrations tested can modify important processes in rASCs such as cell viability, adipogenic differentiation, and DNA damage. Together, these findings prove that EDCs play an important role as contaminants, putatively interfering in cell differentiation and thus impairing the therapeutic use of ASCs.
Asunto(s)
Dibenzodioxinas Policloradas , Adipocitos , Tejido Adiposo , Animales , Compuestos de Bencidrilo , Diferenciación Celular , Osteogénesis , Fenoles , Dibenzodioxinas Policloradas/toxicidad , Ratas , Células MadreRESUMEN
The interaction between bacteriophages and integrins has been reported in different cancer cell lines, and efforts have been undertaken to understand these interactions in tumor cells along with their possible role in gene alterations, with the aim to develop new cancer therapies. Here, we report that the non-specific interaction of T4 and M13 bacteriophages with human PC-3 cells results in differential migration and varied expression of different integrins. PC-3 tumor cells (at 70% confluence) were exposed to 1 × 107 pfu/mL of either lytic T4 bacteriophage or filamentous M13 bacteriophage. After 24 h of exposure, cells were processed for a histochemical analysis, wound-healing migration assay, and gene expression profile using quantitative real-time PCR (qPCR). qPCR was performed to analyze the expression profiles of integrins ITGAV, ITGA5, ITGB1, ITGB3, and ITGB5. Our findings revealed that PC-3 cells interacted with T4 and M13 bacteriophages, with significant upregulation of ITGAV, ITGA5, ITGB3, ITGB5 genes after phage exposure. PC-3 cells also exhibited reduced migration activity when exposed to either T4 or M13 phages. These results suggest that wildtype bacteriophages interact non-specifically with PC-3 cells, thereby modulating the expression of integrin genes and affecting cell migration. Therefore, bacteriophages have future potential applications in anticancer therapies.