Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Med Eng Phys ; 98: 133-139, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34848032

RESUMEN

Electrochemotherapy (ECT) requires covering the entire tumor and safe margins with a suitable pulsed electric field (PEF). The PEF distribution depends on the biological and electrical parameters. The biological tissue may have diffractive geometry with non-linear conductivity behavior due to electroporation. That characteristic may provoke ECT-insufficient electric field regions, also known as blind spots. The conductive gels can fill holes and bumps, being a tool to homogenize the electric field. We executed an in vitro vegetal tissue experiment to validate a numerical model under different gels conditions. We used a study case in silico experiment to investigate gel influence on PEF distribution and electrical current. We propose a case-oriented methodology to optimize the gel during the ECT pre-treatment. Results show that the optimized gel completely treats a region of interest while avoiding unnecessary current increase and damage to healthy tissue by over treatment. The optimized gel conductivity may be lower than the previously reported (0.5 to 1 S/m) and may be in the range of the commercially available gels. For a veterinary mastocytoma exophytic nodule ECT case study, using needles electrode, the 0.2 S/m gel is the optimum gel.


Asunto(s)
Electroquimioterapia , Simulación por Computador , Computadores , Conductividad Eléctrica , Electroporación/métodos , Geles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA