Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Open Med (Wars) ; 19(1): 20241003, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39034949

RESUMEN

Objectives: This narrative review aims to update the current evidence and offer insight into the new non-invasive ultrasound techniques used to early identify degenerative vascular changes in subjects with periodontitis and to investigate if these methodologies could be useful to identify subclinical cardiovascular disease (CVD) dysfunction in periodontitis patients and to monitor changes in CVD risk after periodontal treatment. Methods: Studies examining the assessment of vascular endothelial function through the latest methodologies were analyzed. Systematic reviews, observational studies, and clinical trials in the English language were identified using PubMed, Web of Science, and Google Scholar databases with key search terms such as "periodontitis," "endothelial dysfunction (ED)," "arterial stiffness," and "periodontal therapy." Results: Several mechanisms are involved in the association between periodontitis and CVD. The key players are periodontal bacteria and their toxins, which can enter the circulation and infiltrate blood vessel walls. The increase in proinflammatory molecules such as interleukins and chemokines, c-reactive protein, fibrinogen, and oxidative stress also plays a decisive role. In addition, an increase in parameters of ED, arterial stiffness, and atherosclerosis, such as carotid intima-media thickness, pulse wave velocity, and flow-mediated dilatation, has been shown in periodontal patients. Conclusions: The literature today agrees on the association of periodontitis and CVD and the positive role of periodontal therapy on systemic inflammatory indices and cardiovascular outcomes. Hopefully, these non-invasive methodologies could be extended to periodontal patients to provide a comprehensive understanding of the CVD-periodontitis link from the perspective of a personalized medicine approach in periodontology.

2.
Pharmaceutics ; 15(4)2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37111679

RESUMEN

Pain is the most common symptom that dentists are confronted with, whether acute (pulpitis, acute periodontitis, post-surgery, etc.) or chronic diseases, such as periodontitis, muscle pain, temporomandibular joint (TMJ) disorders, burning mouth syndrome (BMS), oral lichen planus (OLP) and others. The success of therapy depends on the reduction in and management of pain through specific drugs, hence the need to analyze new pain medications with specific activity, which are suitable for long-term use, with a low risk of side effects and interactions with other drugs, and capable of leading to a reduction in orofacial pain. Palmitoylethanolamide (PEA) is a bioactive lipid mediator, which is synthesized in all tissues of the body as a protective pro-homeostatic response to tissue damage and has aroused considerable interest in the dental field due to its anti-inflammatory, analgesic, antimicrobial, antipyretic, antiepileptic, immunomodulatory and neuroprotective activities. It has been observed that PEA could play a role in the management of the pain of orofacial origin, including BMS, OLP, periodontal disease, tongue a la carte and temporomandibular disorders (TMDs), as well as in the treatment of postoperative pain. However, actual clinical data on the use of PEA in the clinical management of patients with orofacial pain are still lacking. Therefore, the main objective of the present study is to provide an overview of orofacial pain in its many manifestations and an updated analysis of the molecular pain-relieving and anti-inflammatory properties of PEA to understand its beneficial effects in the management of patients with orofacial pain, both neuropathic and nociceptive in nature. The aim is also to direct research toward the testing and use of other natural agents that have already been shown to have anti-inflammatory, antioxidant and pain-relieving actions and could offer important support in the treatment of orofacial pain.

3.
Pharmaceutics ; 14(12)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36559234

RESUMEN

Chemical molecules are used by microorganisms to communicate with each other. Quorum sensing is the mechanism through which microorganisms regulate their population density and activity with chemical signaling. The inhibition of quorum sensing, called quorum quenching, may disrupt oral biofilm formation, which is the main etiological factor of oral diseases, including periodontitis. Periodontitis is a chronic inflammatory disorder of infectious etiology involving the hard and soft periodontal tissues and which is related to various systemic disorders, including cardiovascular diseases, diabetes and obesity. The employment of adjuvant therapies to traditional scaling and root planing is currently being studied to further reduce the impact of periodontitis. In this sense, using antibiotics and antiseptics involves non-negligible risks, such as antibiotic resistance phenomena and hinders the re-establishment of eubiosis. Different quorum sensing signal molecules have been identified in periodontal pathogenic oral bacteria. In this regard, quorum sensing inhibitors are emerging as some interesting solutions for the management of periodontitis. Therefore, the aim of this review is to summarize the current state of knowledge on the mechanisms of quorum sensing signal molecules produced by oral biofilm and to analyze the potential of quorum sensing inhibitors for the management of periodontitis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA