RESUMEN
We generated a recombinant vesicular stomatitis virus (VSV-E2) encoding the bovine viral diarrhea virus (BVDV) E2 glycoprotein with the VSV-G protein signal peptide. Infection of BHK21 cells with VSV-E2 induced the synthesis of a recombinant E2 (rE2) that comigrated with authentic BVDV-E2 in PAGE-SDS gels. Non-reducing immunoblots showed that rE2 is a disulfide bond-linked homodimer with at least 10-fold higher avidity for conformation-dependent anti-BVDV-E2 antibodies than its reduced monomeric counterpart. Immunofluorescence microscopy also showed that rE2 was transported to the plasma membrane of infected cells and analysis of purified particles demonstrated that dimeric rE2 was incorporated into VSV-E2 virions in approximately 1:10 ratio with respect to the G glycoprotein. BALB/c mice inoculated intranasally with VSV-E2 doses of up to 10(7) plaque forming units (pfu) showed no symptoms of viral-induced disease and developed a specific BVDV neutralizing response that lasted for at least 180 days post inoculation.
Asunto(s)
Anticuerpos Antivirales/biosíntesis , Virus de la Diarrea Viral Bovina/genética , Virus de la Diarrea Viral Bovina/inmunología , Glicoproteínas de Membrana , Virus de la Estomatitis Vesicular Indiana/genética , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Antivirales/sangre , Secuencia de Bases , Bovinos , Línea Celular , Quimera/genética , Quimera/inmunología , Cricetinae , ADN Recombinante/genética , Femenino , Ratones , Ratones Endogámicos BALB C , Pruebas de Neutralización , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Vacunas Sintéticas/genética , Vacunas Virales/genéticaRESUMEN
To ascertain the virulence of bovine viral diarrhea virus (BVDV) genotype II, isolate NY-93 was inoculated intranasally into 3 calves, 2 of which were treated with a synthetic glucocorticoid prior to and after virus inoculation. Anorexia, fever (up to 42 C), dyspnea, and hemorrhagic diarrhea developed 6 days after intranasal inoculation with BVDV NY-93. The condition of all calves deteriorated further until the end of the study on day 14 postinoculation. The most significant postmortem macroscopic changes in all calves were limited to the gastrointestinal tract and consisted of moderate to severe congestion of the mucosa with multifocal hemorrhages. Microscopic lesions found in the gastrointestinal tract were similar to those observed in mucosal disease, including degeneration and necrosis of crypt epithelium and necrosis of lymphoid tissue throughout the ileum, colon, and rectum. The basal stratum of the epithelium of tongue, esophagus, and rumen had scattered individual necrotic cells. Spleen and lymph nodes had lymphocytolysis and severe lymphoid depletion. Severe acute fibrinous bronchopneumonia was present in dexamethasone-treated calves. Abundant viral antigen was detected by immunohistochemistry in the squamous epithelium of tongue, esophagus, and forestomachs. BVDV antigen was prominent in cells of the media of small arteries and endothelial cells. The presence of infectious virus in tissues correlated with an absence of circulating neutralizing antibodies. These findings highlight the potential of BVDV genotype II to cause severe disease in normal and stressed cattle.