Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 14(4)2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672744

RESUMEN

To date, numerous investigations have shown the beneficial effect of ultrasonic vibration-assisted forming technology due to its influence on the forming load, flow stress, friction condition reduction and the increase of the metal forming limit. Although the immediate occurring force and mean stress reduction are known phenomena, the underlying effects of ultrasonic-based material softening remain an object of current research. Therefore, in this article, we investigate the effect of upsetting with and without the ultrasonic vibrations (USV) on the evolution of the microstructure, stress relaxation and hardness of the AlMg3 aluminum alloy. To understand the process physics, after the UAC (ultrasonic assisted compression), the microstructures of the samples were analyzed by light and electron microscopy, including the orientation imaging via electron backscatter diffraction. According to the test result, it is found that ultrasonic vibration can reduce flow stress during the ultrasonic-assisted compression (UAC) process for the investigated aluminum-magnesium alloy due to the acoustic softening effect. By comparing the microstructures of samples compressed with and without simultaneous application of ultrasonic vibrations, the enhanced shear banding and grain rotation were found to be responsible for grain refinement enhancement. The coupled action of the ultrasonic vibrations and plastic deformation decreased the grains of AlMg3 alloy from ~270 µm to ~1.52 µm, which has resulted in a hardness enhancement of UAC processed sample to about 117 HV.

2.
Materials (Basel) ; 13(2)2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-32284493

RESUMEN

In this study, a dual rolls equal channel extrusion (DRECE) process has been applied for improving the mechanical properties of the 5754 alloy. Supplementary experiments involving metallography, electron backscattered diffraction (EBSD), and XRD tests were carried out to evaluate the effect of the DRECE process. XRD analysis showed that the maximum dislocation density was achieved after six DRECE passes, which were accompanied by the formation that is typical for low-strain structures. The increasing dislocation density, as well as grain refinement throughout DRECE deformation, resulted in an increase in the mechanical properties. Annealing of the as-deformed sample resulted in grain growth and strength reduction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA