Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Insects ; 14(12)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38132605

RESUMEN

Lepidoptera is one of the most speciose insect orders, causing enormous damage to agricultural and forest crops. Although genome editing has been achieved in a few Lepidoptera for insect controls, most techniques are still limited. Here, by injecting female pupae of the Lepidoptera model species, Bombyx mori, gene editing was established using the Receptor-Mediated Ovary Transduction of Cargo (ReMOT) control technique. We identified a B. mori oocytes-targeting peptide ligand (BmOTP, a 29 aa of vitellogenin N-terminal of silkworms) with a highly conserved sequence in lepidopteran insects that could efficiently deliver mCherry into oocytes. When BmOTP was fused to CRISPR-associated protein 9 (Cas9) and the BmOTP-Cas9 ribonucleoprotein complex was injected into female pupae, heritable editing of the offspring was achieved in the silkworms. Compared with embryo microinjection, individual injection is more convenient and eliminates the challenge of injecting extremely small embryos. Our results will significantly facilitate the genetic manipulation of other lepidopteran insects, which is essential for advancing lepidopteran pest control.

2.
Int J Biol Macromol ; 231: 123232, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36681217

RESUMEN

Bone augmentation has an enormous demand in oral clinical treatment. Although there are various options available for clinical management to address it, these approaches could increase patient suffering due to surgical trauma and even cause psychological trauma to the patients. Moreover, presently, there is still a lack of well-considered microinvasive bone augmentation systems to deal with this challenge. Herein, we newly developed a subperiosteal injectable and osteogenesis-promoting hydroxylapatite/laponite/alginate nanocomposite hydrogels to address the insufficient microinvasive bone augmentation strategies. The physical performances (like swelling profiles, degradation behaviors, mechanical properties, and surface morphologies) of the gels were determined, and can be slightly tuned through altering concentrations of laponite. The cytocompatibility test results show outstanding biocompatibility of the hydrogels. Furthermore, the in vitro testing for bone-inducing activity and in vivo determination of bone-augmentation in the rat cranial subperiosteum exhibit that the hydrogels significantly promoted rat periosteum-derived mesenchymal stromal cells (P-MSCs) osteogenic differentiation in vitro and bone augmentation in vivo. Therefore, the research reveals that the nanocomposite hydrogels possessing subperiosteal microinvasive injectability, osteogenesis-enhancing capability, and clinical applicability have extremely great potential application in subperiosteal microinvasive bone augmentation.


Asunto(s)
Durapatita , Osteogénesis , Ratas , Animales , Nanogeles , Materiales Biocompatibles/farmacología , Alginatos/uso terapéutico , Hidrogeles/farmacología , Cráneo
3.
Chemosphere ; 258: 127289, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32535447

RESUMEN

Anammox-based processes and microbial consortia have drawn extensive attention for their use in high-efficiency wastewater treatment technologies. Metals substantially affect the activity of anammox consortia and the quality of wastewater treatment plant effluent. Here, we explored the role of anammox consortia in terms of metals complexation in both single and multi-metal systems. Adsorption edges of single metal cations indicate that the adsorption preference was in the order: Pb(II) > Cd(II) > Cr(VI). A competitive effect was observed in multi-metal cations systems, with Pb(II) being preferably adsorbed and the degree of adsorption somewhat reduced in the presence of either Cd(II) or Cr(VI), while Cd(II) and Cr(VI) were easily exchanged and substituted by other metals. Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) further suggest that the adsorption of Pb(II) and Cd(II) are as inner-sphere ion-exchange mechanisms, while Cr(VI) adsorption is mainly by outer-sphere complexation. Density functional theory (DFT) calculations highlight that Cd(II) and Pb(II) have different binding sites compared to Cr(VI), and the order of binding energy (Ebd) of three metal cations were Pb(II) > Cd(II) > Cr(VI). These calculations support the adsorption data in that Pb forms more stable complexes with anammox bacterial surface ligands. Surface complexation modelling (SCM) further predicted both the sorption of single metal cations and competitive adsorption of the three metals to anammox consortia, the exception being Cd at higher loadings. The results of this study highlight the potential role of anammox consortia in removing metal cations from wastewater in treatment systems.


Asunto(s)
Amoníaco/metabolismo , Reactores Biológicos/microbiología , Metales Pesados/química , Consorcios Microbianos/fisiología , Adsorción , Anaerobiosis , Cationes , Teoría Funcional de la Densidad , Metales Pesados/metabolismo , Oxidación-Reducción , Espectroscopía de Fotoelectrones , Espectroscopía Infrarroja por Transformada de Fourier , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA