Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(6): 9831-9843, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38198086

RESUMEN

As an important input of environmental micropollutants into aquaculture environment, feed is now considered to be a critical factor in shaping gastrointestinal evacuation characteristics of animals. We analyzed the gastrointestinal evacuation characteristics and gut bacteria of Apostichopus japonicus within 30 h after feeding in recirculating aquaculture system (RAS) and explored the evacuation mechanism interacting by bacteria. The Gauss model was the most precise gastrointestinal evacuation curve, and 80% of gastrointestinal evacuation time was 27.81 h after feeding. Linear discriminant analysis effect size analysis revealed that gut microbial abundance associated significantly with time (P < 0.05), and 42 biomarkers that could predict gastrointestinal evacuation were totally detected, such as Lutibacter and Vibrio. Biomarkers at 25 h after feeding were related to harmful bacteria. A dynamic response between gastrointestinal content ratio and gut microbial abundance was detected. Taken together, we could discharge sewage about 25 h after feeding and carry out the next round of feeding activities.


Asunto(s)
Microbioma Gastrointestinal , Stichopus , Vibrio , Animales , Tracto Gastrointestinal , Vibrio/fisiología , Biomarcadores
2.
Mar Environ Res ; 184: 105856, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36592545

RESUMEN

Coral reefs are one of the most diverse, productive ecosystems in the world, and light plays crucial role in its survival. Notably, the effects of light conditions on soft coral and its adaptive mechanism were unclear. Thus, the present study aimed to investigate and evaluate the effects of different light intensities (30, 80 and 130 µmol m-2 s-1) and photoperiods (18D:6L, 12D:12L and 6D:18L) on cultivation of soft coral Sarcophyton trocheliophorum. During two 50-day of the experiments, we monitored the zooxanthellae density, Chl a content, enzyme activities (SOD, CAT and GST) and microbial diversity of S. trocheliophorum. Our study's outcomes found that, at the end of the experiment, the 80 µmol m-2 s-1 light intensity group and 12D:12L photoperiod group both possessed the highest zooxanthellae density (2.54 × 108 ± 0.14 × 108 cells g-1 DW and 2.40 × 108 ± 0.07 × 108 cells g-1 DW, respectively), Chl a content (295.01 ± 14.13 µg g-1 DW and 287.78 ± 16.13 µg g-1 DW, respectively) and microbial diversity and relatively stable enzyme activities level. Besides, we speculated that the reason for the decline of zooxanthellae density, Chl a content and microbial diversity under other light conditions might be that it induced light stress and caused oxidative damage. The main bacterial composition of S. trocheliophorum in different light conditions was similar at the phylum level, showing the stability of microbial community structure. Proteobacteria, Actinobacteria and Firmicutes were dominant under all light conditions, so we hypothesized that these bacteria phylum play a crucial role in coral growth and survival. In conclusion, compared with the other treatments, 80 µmol m-2 s-1 light intensity and 12D:12L photoperiod were more beneficial to the growth performance of S. trocheliophorum and could be recommended for its cultivation condition. Our study could provide helpful information for sustainable management plans for the cultivation and conservation of soft corals, which was especially important to the protection and restoration of degraded coral reefs.


Asunto(s)
Antozoos , Animales , Antozoos/química , Fotoperiodo , Ecosistema , Arrecifes de Coral , Bacterias
3.
J Environ Manage ; 330: 117100, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36608606

RESUMEN

With the aggravation of environmental pollution caused by traditional culture of Apostichopus japonicus, the concept of A. japonicus recirculating aquaculture system (RAS) came into being. To plan the sewage discharge time reasonably, we explored the temporal variation of water quality, biofilter microbe and fecal metabolome in RAS and relevant mechanism. The results showed that monitored water quality in RAS were within the safe living range of A. japonicus. Proteobacteria and Desulfobacterota were dominant bacteria in biofilter. The RDA results and correlation heatmap showed that NH4-N and NO2-N significantly affected the microbial community composition. The expression pattern of fecal metabolites changed with the passage of time after feeding. And ROC curve analysis and VIP bar chart showed that there were inter group biomarkers with predictive performance, which could help to remind timely sewage discharge. Topological analysis of KEGG pathway enrichment showed that metabolic pathways such as alanine, aspartate and glutamate metabolism changed significantly after feeding (P < 0.01). Additionally, the correlation analysis results showed that biofilter microbe and fecal metabolites were related to water quality (P < 0.05). Combined with the above research results, this study concluded that the RAS could discharge sewage 25-30 h after feeding. These findings were of direct significance to the management of RAS environment and the protection of A. japonicus healthy growth.


Asunto(s)
Microbiota , Stichopus , Animales , Aguas del Alcantarillado , Calidad del Agua , Acuicultura/métodos , Metaboloma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA