Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Ethnopharmacol ; 336: 118715, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39179058

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Si-Ni-San (SNS), a traditional Chinese medicinal formula derived from Treatise on Febrile Diseases, is considered effective in the treatment of inflammatory bowel diseases based upon thousands of years of clinical practice. However, the bioactive ingredients and underlying mechanisms are still unclear and need further investigation. AIM OF THE STUDY: This study aimed to evaluate the effect, explore the bioactive ingredients and the underlying mechanisms of SNS in ameliorating ulcerative colitis (UC) and associated liver injury in dextran sodium sulphate (DSS)-induced mouse colitis models. MATERIALS AND METHODS: The effect of SNS (1.5, 3, 6 g/kg) on 3% DSS-induced acute murine colitis was evaluated by disease activity index (DAI), colon length, inflammatory cytokines, hematoxylin-eosin (H&E) staining, tight junction proteins expression, ALT, AST, and oxidative stress indicators. HPLC-ESI-IT/TOF MS was used to analyze the chemical components of SNS and the main xenobiotics in the colon of UC mice after oral administration of SNS. Network pharmacological study was then conducted based on the main xenobiotics. Flow cytometry and immunohistochemistry techniques were used to demonstrate the inhibitory effect of SNS on Th17 cells differentiation and the amelioration of Th17/Treg cell imbalance. LC-MS/MS, Real-time quantitative polymerase chain reaction (RT-qPCR), and western blotting techniques were performed to investigate the oxysterol-Liver X receptor (LXRs) signaling activity in colon. Targeted bile acids metabolomics was conducted to reveal the change of the two major pathways of bile acid synthesis in the liver, and the expression of key metabolic enzymes of bile acids synthesis was characterized by RT-qPCR and western blotting techniques. RESULTS: SNS (1.5, 3, 6 g/kg) decreased the DAI scores, protected intestinal mucosa barrier, suppressed the production of pro-inflammatory cytokines, improved hepatic and splenic enlargement and alleviated liver injury in a dose-dependent manner. A total of 22 components were identified in the colon of SNS (6 g/kg) treated colitis mice, and the top 10 components ranked by relative content were regarded as the potential effective chemical components of SNS, and used to conduct network pharmacology research. The efficacy of SNS was mediated by a reduction of Th17 cell differentiation, restoration of Th17/Treg cell homeostasis in the colon and spleen, and the experimental results were consistent with our hypothesis and the biological mechanism predicted by network pharmacology. Mechanistically, SNS regulated the concentration of 25-OHC and 27-OHC by up-regulated CH25H, CYP27A1 protein expression in colon, thus affected the expression and activity of LXR, ultimately impacted Th17 differentiation and Th17/Treg balance. It was also found that SNS repressed the increase of hepatic cholesterol and reversed the shift of BA synthesis to the acidic pathway in UC mice, which decreased the proportion of non-12-OH BAs in total bile acids (TBAs) and further ameliorated colitis and concomitant liver injury. CONCLUSIONS: This study set the stage for considering SNS as a multi-organ benefited anti-colitis prescription based on the significant effect of ameliorating intestinal and liver damage, and revealed that derivatives of cholesterol, namely oxysterols and bile acids, were closely involved in the mechanism of SNS anti-colitis effect.


Asunto(s)
Colesterol , Colitis Ulcerosa , Sulfato de Dextran , Medicamentos Herbarios Chinos , Animales , Medicamentos Herbarios Chinos/farmacología , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/patología , Colitis Ulcerosa/metabolismo , Ratones , Masculino , Colesterol/sangre , Células Th17/efectos de los fármacos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Colon/efectos de los fármacos , Colon/patología , Colon/metabolismo , Farmacología en Red , Citocinas/metabolismo , Linfocitos T Reguladores/efectos de los fármacos
2.
Chin Med ; 19(1): 94, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956673

RESUMEN

BACKGROUND: Irinotecan (CPT-11) is a first-line treatment for advanced colorectal cancer (CRC). Four components (baicalin, baicalein, wogonin, and glycyrrhizic acid) derived from Huangqin Decoction (HQD) have been proven to enhance the anticancer activity of CPT-11 in our previous study. OBJECTIVE: This study aimed to determine the optimal combination of the four components for sensitizing CPT-11 as well as to explore the underlying mechanism. METHODS: The orthogonal design method was applied to obtain candidate combinations (Cmb1-9) of the four components. The influence of different combinations on the anticancer effect of CPT-11 was first evaluated in vitro by cell viability, wound healing ability, cloning formation, apoptosis, and cell cycle arrest. Then, a CRC xenograft mice model was constructed to evaluate the anticancer effect of the optimal combination in vivo. Potential mechanisms of the optimal combination exerting a sensitization effect combined with CPT-11 against CRC were analyzed by targeted metabolomics. RESULTS: In vitro experiments determined that Cmb8 comprised of baicalin, baicalein, wogonin, and glycyrrhizic acid at the concentrations of 17 µM, 47 µM, 46.5 µM and 9.8 µM respectively was the most effective combination. Importantly, the cell viability assay showed that Cmb8 exhibited synergistic anticancer activity in combination with CPT-11. In in vivo experiments, this combination (15 mg/kg of baicalin, 24 mg/kg of baicalein, 24 mg/kg of wogonin, and 15 mg/kg of glycyrrhizic acid) also showed a synergistic anticancer effect. Meanwhile, inflammatory factors and pathological examination of the colon showed that Cmb8 could alleviate the gastrointestinal damage induced by CPT-11. Metabolic profiling of the tumors suggested that the synergistic anticancer effect of Cmb8 might be related to the regulation of fatty acid metabolism. CONCLUSION: The optimal combination of four components derived from HQD for the synergistic sensitization of CPT-11 against CRC was identified.

3.
Talanta ; 277: 126378, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38870757

RESUMEN

In our previous study, a chemical derivatization reagent named 5-(dimethylamino) naphthalene-1-sulfonyl piperazine (Dns-PP) was developed to enhance the chromatographic retention and the mass spectrometric response of free fatty acids (FFAs) in reversed-phase liquid chromatography coupled with electrospray ionization-mass spectrometry (RPLC-ESI-MS). However, Dns-PP exhibited strong preferences for long-chain FFAs, with limited improvement for short- or medium-chain FFAs. In this study, a new series of labeling reagents targeting FFAs were designed, synthesized, and evaluated. Among these reagents, Tmt-PP (N2, N2, N4, N4-tetramethyl-6-(4-(piperazin-1-ylsulfonyl) phenyl)-1,3,5-triazine-2,4-diamine) exhibited the best MS response and was selected for further evaluations. We compared Tmt-PP with Dns-PP and four commonly used carboxyl labeling reagents from existing studies, demonstrating the advantages of Tmt-PP. Further comparisons between Tmt-PP and Dns-PP in measuring FFAs from biological samples revealed that Tmt-PP labeling enhanced the MS response for about 80 % (30/38) of the measured FFAs, particularly for short- and medium-chain FFAs. Moreover, Tmt-PP labeling significantly improved the chromatographic retention of short-chain FFAs. To ensure accurate quantification, we developed a stable isotope-labeled Tmt-PP (i.e., d12-Tmt-PP) to react with chemical standards and serve as one-to-one internal standards (IS). The method was validated for accuracy, precision, sensitivity, linearity, stability, extraction efficiency, as well as matrix effect. Overall, this study introduced a new chemical derivatization reagent Tmt-PP (d12-Tmt-PP), providing a sensitive and accurate option for quantifying FFAs in biological samples.


Asunto(s)
Piperazinas , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Piperazinas/química , Animales , Cromatografía Liquida/métodos , Ácidos Grasos/química , Ácidos Grasos/análisis , Indicadores y Reactivos/química , Sulfonas/química , Humanos , Cromatografía Líquida con Espectrometría de Masas
4.
AAPS PharmSciTech ; 25(5): 122, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816546

RESUMEN

Prinsepia utilis seed oil (PUSO) is a natural medication obtained from Prinsepia utilis Rogle seed, which has been used for the treatment of skin diseases. The study aims to prepare ethosomes with high drug loading as a water-soluble transdermal vehicle to enhance the transdermal delivery of PUSO. PUSO-loaded ethosomes (PEs) were prepared using a cold method, and optimized by an orthogonal experimental design with entrapment efficiency (EE) as the dependent variable. The PEs prepared with the optimized formulation showed good stability, with a spherical shape under transmission electron microscopy (TEM), average particle size of 39.12 ± 0.85 nm, PDI of 0.270 ± 0.01, zeta potential of -11.3 ± 0.24 mV, and EE of 95.93 ± 0.43%. PEs significantly increased the skin deposition of PUSO compared to the PUSO suspension (P < 0.001). Moreover, the optimum formula showed significant ameliorative effects on ultraviolet B (UVB) irradiation-associated macroscopic and histopathological changes in mice skin. Therefore, PEs represent a promising therapeutic approach for the treatment of UVB-induced skin inflammation, with the potential for industrialization.


Asunto(s)
Administración Cutánea , Tamaño de la Partícula , Aceites de Plantas , Semillas , Piel , Rayos Ultravioleta , Animales , Rayos Ultravioleta/efectos adversos , Ratones , Aceites de Plantas/farmacología , Aceites de Plantas/administración & dosificación , Aceites de Plantas/química , Piel/efectos de los fármacos , Piel/metabolismo , Piel/patología , Absorción Cutánea/efectos de los fármacos , Química Farmacéutica/métodos , Enfermedades de la Piel/tratamiento farmacológico , Enfermedades de la Piel/etiología , Masculino , Sistemas de Liberación de Medicamentos/métodos
5.
J Chromatogr A ; 1722: 464865, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598891

RESUMEN

Oxysterols and cholesterol precursors are being increasingly investigated in humans and laboratory animals as markers for various diseases in addition to their important functions. However, the quantitative analysis of these bioactive molecules is obstructed by high structural similarity, poor ionization efficiency and low abundance. The current assay methods are still cumbersome to be of practical use, and their applicability in different bio-samples needs to be evaluated and optimized as necessary. In the present work, chromatographic separation conditions were carefully studied to achieve baseline separation of difficult-to-isolate compound pairs. On the other hand, an efficient sample purification method was established for colon tissue samples with good recoveries of sterols, demonstrating negligible autoxidation of cholesterol into oxysterols. The developed UPLC-APCI-MS/MS method was thoroughly validated and applied to measure oxysterols and cholesterol precursors in colon tissue of dextran sulfate sodium (DSS)-induced mouse colitis models, and it is expected to be successfully applied to the quantitative determination of such components in other tissue samples.


Asunto(s)
Colesterol , Colitis Ulcerosa , Colon , Oxiesteroles , Animales , Masculino , Ratones , Colesterol/análisis , Colesterol/análogos & derivados , Cromatografía Líquida de Alta Presión/métodos , Colitis Ulcerosa/metabolismo , Colon/química , Colon/metabolismo , Sulfato de Dextran , Modelos Animales de Enfermedad , Cromatografía Líquida con Espectrometría de Masas , Ratones Endogámicos C57BL , Oxiesteroles/análisis
6.
J Ethnopharmacol ; 328: 118082, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38522625

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Longdan zhike tablet (LDZK) is a Tibetan medicine formula commonly used in the highland region of Tibet, China, to ameliorate respiratory diseases, such as acute bronchitis and asthma. In Chinese traditional medicine, some herbal formulas with anti-inflammatory properties targeting the respiratory system are clinically adopted as supplementary therapies for chronic obstructive pulmonary disease (COPD). However, the specific anti-COPD effects of LDZK remain to be evaluated. AIM OF THE STUDY: The aim of this study is to identify the principal bioactive compounds in LDZK, and elucidate the effects and mechanisms of the LDZK on COPD. METHODS: High-resolution mass spectrometry was utilized for a comprehensive characterization of the chemical composition of LDZK. The therapeutic effects of LDZK were assessed on the LPS-papain-induced COPD mouse model, and LPS-induced activation model of A549 cells. The safety of LDZK was evaluated by orally administering a single dose of 30 g/kg to rats and monitoring physiological and biochemical indicators after a 14-day period. Network pharmacology and Western blot analysis were employed for mechanism prediction of LDZK. RESULTS: A comprehensive analysis identified a total of 45 compounds as the major constituents of LDZK. Oral administration of LDZK resulted in notable ameliorative effects in respiratory function, accompanied by reduced inflammatory cell counts and cytokine levels in the lungs of COPD mice. Acute toxicity tests demonstrated a favorable safety profile at a dose equivalent to 292 times the clinically prescribed dose. In vitro studies revealed that LDZK exhibited protective effects on A549 cells by mitigating LPS-induced cellular damage, reducing the release of NO, and downregulating the expression of iNOS, COX2, IL-1ß, IL-6, and TNF-α. Network pharmacology and Western blot analysis indicated that LDZK primarily modulated the MAPK signaling pathway and inhibited the phosphorylation of p38/ERK/JNK. CONCLUSIONS: LDZK exerts significant therapeutic effects on COPD through the regulation of the MAPK pathway, suggesting its potential as a promising adjunctive therapy for the treatment of chronic inflammation in COPD.


Asunto(s)
Medicina Tradicional Tibetana , Enfermedad Pulmonar Obstructiva Crónica , Ratas , Ratones , Animales , Lipopolisacáridos/farmacología , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Pulmón , Transducción de Señal
7.
Eur J Med Chem ; 268: 116285, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38428273

RESUMEN

Biological studies on the endocannabinoid system (ECS) have suggested that monoacylglycerol lipase (MAGL), an essential enzyme responsible for the hydrolysis of 2-arachidonoylglycerol (2-AG), is a novel target for developing antidepressants. A decrease of 2-AG levels in the hippocampus of the brain has been observed in depressive-like models induced by chronic stress. Herein, employing a structure-based approach, we designed and synthesized a new class of (piperazine-1-carbonyl) quinolin-2(1H)-one derivatives as potent, reversible and selective MAGL inhibitors. And detailed structure-activity relationships (SAR) studies were discussed. Compound 27 (IC50 = 10.3 nM) exhibited high bioavailability (92.7%) and 2-AG elevation effect in vivo. Additionally, compound 27 exerted rapid antidepressant effects caused by chronic restraint stress (CRS) and didn't show signs of addictive properties in the conditioned place preference (CPP) assays. Our study is the first to report that reversible MAGL inhibitors can treat chronic stress-induced depression effectively, which may provide a new potential therapeutic strategy for the discovery of an original class of safe, rapid antidepressant drugs.


Asunto(s)
Inhibidores Enzimáticos , Monoacilglicerol Lipasas , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Monoacilglicerol Lipasas/metabolismo , Depresión/tratamiento farmacológico , Monoglicéridos , Relación Estructura-Actividad , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Endocannabinoides
8.
Adv Healthc Mater ; 13(12): e2303710, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38293743

RESUMEN

Diagnosing and treating liver fibrosis is a challenging yet crucial endeavor due to its complex pathogenesis and risk of deteriorating into cirrhosis, liver failure, and even hepatic cancer. Herein, a silica cross-linked micelles (SCLMs) based nano-system is developed for both diagnosing and treating liver fibrosis. The SCLMs are first modified with peptide CTCE9908 (CT-SCLMs) and can actively target CXCR4, which is overexpressed in activated hepatic stellate cells (HSCs). To enable diagnosis, an ONOO--responded near-infrared fluorescent probe NOF2 is loaded into the CT-SCLMs. This nano-system can target the aHSCs and diagnose the liver fibrosis particularly in CCl4-induced liver damage, by monitoring the reactive nitrogen species. Furthermore, a step is taken toward treatment by co-encapsulating two anti-fibrosis drugs, silibinin and sorafenib, within the CT-SCLMs. This combined approach results in a significant alleviation of liver injury. Symptoms associated with liver fibrosis, such as deposition of collagen, expression of hydroxyproline, and raised serological indicators show notable improvement. In summary, the CXCR4-targeted nano-system can serve as a promising theragnostic system of early warning and diagnosis for liver fibrosis, offering hope against progression of this serious liver condition.


Asunto(s)
Células Estrelladas Hepáticas , Cirrosis Hepática , Micelas , Nanomedicina , Cirrosis Hepática/metabolismo , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Cirrosis Hepática/diagnóstico , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/efectos de los fármacos , Animales , Nanomedicina/métodos , Humanos , Receptores CXCR4/metabolismo , Masculino , Diagnóstico Precoz , Ratones
9.
Eur J Med Chem ; 266: 116155, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38266553

RESUMEN

Novel hybrids of selective COX-2 inhibitors (coxibs) and active derivatives of free radical scavenger edaravone were designed to overcome the risk of cardiovascular events and stroke increased by NSAIDs (nonsteroidal anti-inflammatory drugs) in this study. All the hybrids were assayed for the COX-2 inhibitory and DPPH (2, 2-diphenyl-1-picrylhydrazyl) free radical scavenging activities in vitro. Finally, we found a series of hybrids with good inhibitory activity and selectivity of COX-2 and excellent free radical scavenging activity in vitro. The most promising compound 6a (WYZ90) exhibited very potent COX-2 inhibitory activity (COX-2, IC50 = 75 nM), weak COX-1 inhibitory activity (COX-1, IC50 = 5734 nM), better free radical scavenging activity (DPPH, IC50 = 19.9 µM) than edaravone, moderate drug-likeness and ADME properties in silico, acceptable pharmacokinetic properties (T1/2 = 4.16 h, 10 mg/kg, o.p.) and oral bioavailability (F% = 36.03 %) in mice. In addition, compound WYZ90 showed similar analgesic activity to the selective COX-2 inhibitor celecoxib in acetic acid-induced mice and better antioxidant activity in Fe2+-induced lipid peroxidation in mouse liver tissue homogenate than edaravone. In conclusion, this study provided a novel class of coxibs containing edaravone moiety as COX-2 selective NSAIDs with free radical scavenging activity and the candidate compound WYZ90 showed not only similar selective COX-2 inhibitory and analgesic activity to celecoxib but also better free radical scavenging and antioxidant activity than edaravone.


Asunto(s)
Antiinflamatorios no Esteroideos , Inhibidores de la Ciclooxigenasa 2 , Ratones , Animales , Antiinflamatorios no Esteroideos/farmacología , Inhibidores de la Ciclooxigenasa 2/farmacología , Edaravona/farmacología , Ciclooxigenasa 2 , Celecoxib , Antioxidantes , Analgésicos/farmacología , Radicales Libres/química
10.
J Trace Elem Med Biol ; 83: 127398, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38245934

RESUMEN

BACKGROUND: Cinnabaris (α-HgS), a mineral traditional Chinese material medica, has been used in combination with other herbs manifesting some definite therapeutic effects for thousands of years. But the currently reported mercury poisoning incidents raised the doubts about the safety of Cinnabaris-containing traditional Chinese medicines (TCMs). Baizi Yangxin Pills (BZYXP) is a Cinnabaris-containing TCM widely used in clinical practice. This study evaluated the health risk of mercury exposure from BZYXP in healthy volunteers based on the total mercury and mercury species analysis of blood and urine after single and multiple doses of BZYXP. METHODS: Blood pharmacokinetics and urinary excretion studies of mercury were compared between single (9 g, once daily) and multiple doses (9 g, twice daily, continued for 7 days) of BZYXP. The whole blood and urine samples were collected at the specific points or periods after the administration of BZYXP. The total mercury and mercury species in blood and urine samples were determined by cold vapor-atomic fluorescence spectrometry (CV-AFS) and HPLC-CV-AFS, respectively. RESULTS: The mercury was excreted slowly and accumulated obviously after continuous exposure of BZYXP. Moreover, the well-known neurotoxin methylmercury (MeHg) was detected in blood samples after 7 days' administration of BZYXP. In the urine samples, only Hg(II) was detected. Therefore, long-term use of BZYXP will cause mercury poisoning due to mercury's high accumulative properties and MeHg formation. CONCLUSION: Cinnabaris-containing TCMs such as BZYXP should be restricted to cases in which alternatives are available, and the blood mercury species profile should be monitored during the long-term clinical medication.


Asunto(s)
Intoxicación por Mercurio , Mercurio , Compuestos de Metilmercurio , Humanos , Voluntarios Sanos , Medicina Tradicional China , Medición de Riesgo
11.
Rapid Commun Mass Spectrom ; 38(2): e9651, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38124167

RESUMEN

RATIONALE: Pyrrolidone-based drugs find widespread use in treating conditions such as epilepsy and Alzheimer's disease, and in various other medical applications. Brivaracetam, the latest generation of pyrrolidone drugs, has exhibited significant promise owing to chemical structure modifications. Its affinity to the SV2A receptor is double that of the previous-generation drug, levetiracetam. Consequently, brivaracetam holds substantial potential for diverse applications. As a novel drug not yet included in the pharmacopeias of developed nations, comprehensive analysis and research are necessary to guarantee its safe utilization in clinical settings. METHODS: A liquid chromatography quadrupole time-of-flight tandem mass spectrometry (LC/QTOFMS) method has been developed to effectively separate, identify and characterize both the degradation products and process-related substances of brivaracetam. Stress testing of the sample was carried out following the guidelines outlined in ICH Q1A(R2). The structures of these impurities were identified through positive electrospray ionization QTOF high-resolution MS and NMR spectroscopy. Additionally, the formation mechanism of each degradation product is thoroughly discussed. RESULTS: Under the analytical conditions outlined in this paper, brivaracetam and its degradation products were effectively separated. Thirteen degradation products were detected and characterized, shedding light on their origins and degradation pathways. Among these, three degradation products align with previously reported impurities, and two unreported degradation products were synthesized and confirmed through NMR spectroscopy. The stress testing results revealed the instability of brivaracetam under acidic, alkaline, oxidative and thermal stress conditions, while it exhibited relative stability under photolytic stress conditions. CONCLUSION: The study developed an analytical method for brivaracetam that enabled the effective detection and separation of brivaracetam and its 13 degradation products. This method addresses a gap in both current domestic and foreign drug standards. The structures of all the major degradation products were characterized by high-resolution LC/QTOFMS, which is essential for quality control during the drug production process, stability evaluation and the establishment of proper storage conditions.


Asunto(s)
Pirrolidinonas , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Hidrólisis , Cromatografía Liquida/métodos , Oxidación-Reducción , Fotólisis , Estabilidad de Medicamentos , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos
12.
Bioorg Chem ; 141: 106919, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37871388

RESUMEN

Endocrine therapy (ET) is a well-validated strategy for estrogen receptor α positive (ERα + ) breast cancer therapy. Despite the clinical success of current standard of care (SoC), endocrine-resistance inevitably emerges and remains a significant medical challenge. Herein, we describe the structural optimization and evaluation of a new series of selective estrogen receptor covalent antagonists (SERCAs) based on benzothiophene scaffold. Among them, compounds 15b and 39d were identified as two highly potent covalent antagonists, which exhibits superior antiproliferation activity than positive controls against MCF-7 cells and shows high selectivity over ERα negative (ERα-) cells. More importantly, their mode of covalent engagement at Cys530 residue was accurately illustrated by a cocrystal structure of 15b-bound ERαY537S (PDB ID: 7WNV) and intact mass spectrometry, respectively. Further in vivo studies demonstrated potent antitumor activity in MCF-7 xenograft mouse model and an improved safety profile. Collectively, these compounds could be promising candidates for future development of the next generation SERCAs for endocrine-resistant ERα + breast cancer.


Asunto(s)
Neoplasias de la Mama , Antagonistas del Receptor de Estrógeno , Humanos , Ratones , Animales , Femenino , Receptor alfa de Estrógeno , Receptores de Estrógenos , Cristalografía por Rayos X , Neoplasias de la Mama/tratamiento farmacológico , Células MCF-7 , Antagonistas de Estrógenos
13.
Anal Chem ; 95(34): 12893-12902, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37589895

RESUMEN

Genotoxic impurities (GTIs) occurred in drugs, and food and environment pose a threat to human health. Accurate and sensitive evaluation of GTIs is of significance. Ames assay is the existing gold standard method. However, the pathogenic bacteria model lacks metabolic enzymes and requires mass GTIs, leading to insufficient safety, accuracy, and sensitivity. Whole-cell microbial sensors (WCMSs) can use normal strains to simulate the metabolic environment, achieving safe, sensitive, and high-throughput detection and evaluation for GTIs. Here, based on whether GTIs causing DNA alkylation required metabolic enzymes or not, two DNA repair-responsive engineered WCMS systems were constructed including Escherichia coli-WCMS and yeast-WCMS. A DNA repair-responsive promoter as a sensing element was coupled with an enhanced green fluorescent protein as a reporter to construct plasmids for introduction into WCMS. The ada promoter was screened out in the E. coli-WCMS, while the MAG1 promoter was selected for the yeast-WCMS. Different E. coli and yeast strains were modified by gene knockout and mutation to eliminate the interference and enhance the GTI retention in cells and further improved the sensitivity. Finally, GTI consumption of WCMS for the evaluation of methyl methanesulfonate (MMS) and nitrosamines was decreased to 0.46-8.53 µg and 0.068 ng-2.65 µg, respectively, decreasing 2-3 orders of magnitude compared to traditional methods. This study provided a novel approach to measure GTIs with different DNA damage pathways at a molecular level and facilitated the high-throughput screening and sensitive evaluation of GTIs.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Escherichia coli/genética , Reparación del ADN , Daño del ADN
14.
J Pharm Biomed Anal ; 235: 115618, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37540997

RESUMEN

Chemical index components, especially those defined as quality control (QC) markers through spectrum-effect relationship approach, are commonly suggested and adopted as indicator for quality control of Traditional Chinese Medicines (TCMs). However, are chemical index components and quality control of TCMs "never change a winning team"? In this study, under the ponderation of the applicability of QC markers strategy, spectrum-effect relationship and OPLS-DA between GC×GC-MS fingerprint and inhibitory effect on the expression of extracellular secretory TNF-α of volatile oil from Bupleuri radix (BVO) was studied with the purpose of discovery of QC markers and establish a bioactive compounds-based QC method. 290 compounds of BVO were identified by GC×GC-MS. Besides, BVO had significant inhibitory effects on the expression of extracellular secretory TNF-α in a dose-dependent manner. The potency of different batches of BVOs could be distinguished with this bioassay-based method, which has been validated in terms of intermediate precision, repeatability, linearity, range and credibility tests. The QC markers of BVO were investigated by Spearman's correlation test and OPLS-DA. It is regrettable that there were no ideal QC markers of BVO could be found. In conclusion, quality control method relayed on chemical QC markers is not feasible for TCMs with complex composition but lack of ingredients that dominate in content, just like BVO. Alternatively, a bioassay-based method established in our study is suitable for quality control of BVO.


Asunto(s)
Medicamentos Herbarios Chinos , Aceites Volátiles , Medicina Tradicional China , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Aceites Volátiles/farmacología , Factor de Necrosis Tumoral alfa , Control de Calidad
15.
Anal Chim Acta ; 1274: 341570, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37455081

RESUMEN

Dipeptides (DPs) have attracted more and more attention in many research fields due to their important biological functions and promising roles as disease biomarkers. However, the determination of DPs in biological samples is very challenging owing to the limited availability of commercial standards, high structure diversity, distinct physical and chemical characteristics, wide concentration range, and the extensive existence of isomers. In this study, a pseudotargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) method coupled with chemical derivatization for the simultaneous analysis of 400 DPs and their constructing amino acids (AAs) in biospecimens is established. Dansyl chloride (Dns-Cl) chemical derivatization was introduced to provide characteristic MS fragments for annotation and improve the chromatographic separation of DP isomers. A retention time (RT) prediction model was constructed using 83 standards (63 DPs and 20 AAs) based on their quantitative structural retention relationship (QSRR) after the Dns-Cl labeling, which largely facilitated the annotation of the DPs without standards. Finally, we applied this method to investigate the profile change of DPs in a cisplatin-induced acute kidney injury (AKI) rat model. The established workflow provides a platform to profile DPs and expand our understanding of these little-studied metabolites.


Asunto(s)
Metabolómica , Espectrometría de Masas en Tándem , Animales , Ratas , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Metabolómica/métodos , Compuestos de Dansilo , Aminas/química , Aminoácidos/análisis
16.
Heliyon ; 9(6): e16553, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37274655

RESUMEN

Zhuling Jianpi Capsule (Zhuling) is a traditional Chinese medicinal formula used to treat symptoms such as abdominal pain, bloating and diarrhea associated with inflammatory bowel disease (IBD). However, the protective effects of Zhuling on experimental ulcerative colitis (UC) and the effective substance responsible for its efficacy have rarely been reported. In this study, we evaluated the therapeutic effects of orally administrated Zhuling on DSS-induced UC in mice. The chemical constituents and metabolomics of Zhuling were qualitatively analyzed by ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS). The results showed that Zhuling treatment markedly alleviated DSS-induced clinical symptoms, restrained the secretion of pro-inflammatory cytokines, and improved intestinal epithelial barrier function. Furthermore, a total of 167 compounds have been identified or characterized, and 120 prototype components were detected in the urine, plasma, bile and feces of mice. Among them, altogether 26 representative prototypes were associated with 139 metabolites via the corresponding biotransformation pathways, and both of them mainly contained flavonoids, alkaloids, organic acids, monoterpenes, phenylpropanoids, triterpenoids, sesquiterpenoids and anthraquinones. Finally, 12 potent compounds mainly containing flavonoids, terpenoids and phenylpropanoids were screened out as potential quality control index components and might be the main substances that exert a pharmacological effect. Our data indicated that Zhuling administration prominently alleviates DSS-induced colitis in mice. Additionally, the chemical and metabolic profiling provided helpful information on the potential pharmacodynamic substances of Zhuling, which can be further investigated in the future.

17.
Bioorg Chem ; 134: 106459, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36924653

RESUMEN

Both estrogen receptor α (ERα) and histone deacetylases (HDACs) are valid therapeutic targets for anticancer drug development. Combination therapies using diverse ERα antagonists or degraders and HDAC inhibitors have been proven effective in endocrine-resistant ER + breast cancers based on the crosstalk between ERα and HDAC pathway. In this study, we reported the optimization of a series of methoxyphenyl- or pyridinyl- substituted tetrahydroisoquinoline-hydroxamates, which were optimized from 31, a dual ERα degrader/HDAC inhibitor previously reported by our group. Most of the synthesized compounds displayed potent ERα degradation efficacy and antiproliferative activity. Among them, A04 demonstrated the best anti-proliferation activity (MCF-7 IC50 = 1.96 µM) and HDAC6 inhibitory activity (HDAC6 IC50 = 25.96 nM), which is slightly more potent than the lead compound 31 (MCF-7 IC50 = 4.38 µM, HDAC6 IC50 = 63.03 nM). In addition, compound A04 exerted ERα-independent HDAC6-inhibiting effect without agonistic activity in endometrial cells. These results demonstrated that A04 is a novel and promising dual ERα degrader/HDAC inhibitor worthy of further development.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Tetrahidroisoquinolinas , Humanos , Femenino , Inhibidores de Histona Desacetilasas/química , Receptor alfa de Estrógeno/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Histona Desacetilasas/metabolismo , Ácidos Hidroxámicos/farmacología , Tetrahidroisoquinolinas/farmacología , Proliferación Celular , Antineoplásicos/química , Relación Estructura-Actividad , Línea Celular Tumoral
18.
Biomater Sci ; 11(3): 791-812, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36545758

RESUMEN

Cerebral ischemic stroke remains one of the most serious neurological disorders that pose threats to human health, causing a large amount of long-term disability or even death throughout the world. Based on its physiologic and pathological features, there are limited available therapeutic options for effective ischemic stroke management. Encouragingly, a rapid advancement of nanobiotechnology is bringing new insights into exploring more alternative strategies against cerebral ischemic stroke, which can cleverly overcome the limitations related to conventional treatment methods. Therefore, this review focuses on the recent achievements of nanobiotechnology for ischemic stroke management, which emphasizes diverse targeted delivery strategies using various nanoplatforms including liposomes, micelles, polymeric nanoparticles, nanogels, inorganic nanomaterials, and cell-derived nano-vectors based on the pathophysiological features of ischemic stroke. Moreover, different therapeutic approaches against ischemic stroke such as neuroprotection, anti-inflammation, thrombolysis, increased blood-brain barrier penetration and reactive oxygen species scavenging are highlighted. Meanwhile, this review discusses how these versatile nanoplatforms were designed to assist in the treatment of ischemic stroke. Based on this, challenges, opportunities, and future perspectives using nanobiotechnology through rational design for effective ischemic stroke management are revealed.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/tratamiento farmacológico , Liposomas , Barrera Hematoencefálica , Neuroprotección
19.
Bioorg Med Chem ; 74: 117053, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36270112

RESUMEN

Cathepsin K (Cat K), mainly expressed by osteoclasts, plays an important role in bone resorption. Covalent Cat K inhibitors will show great potential in the future treatment of osteoporosis. It has been reported that the selectivity of covalent cathepsin K inhibitors was related to the drug's safety. The type of warhead has a crucial influence on the enzyme bioactivity and selectivity of covalent inhibitors. In order to develop novel covalent inhibitors with the selective new warhead, quantum chemical calculations were performed to estimate the reactivity of the nitrile warheads. Moreover, binding mode analysis between ligands and high homology Cat K, S and B revealed differences in non-covalent interactions. Novel covalent Cat K inhibitors containing 4-cyanopyrimidine warhead (11) were determined for the first time. Among them, compound 34 significantly inhibited Cat K (IC50 = 61.9 nM) with excellent selectivity compared to Cat S (>810-fold) and Cat B (>1620-fold), respectively. Binding mode analysis of Cat K-34 complex provided the basis for further optimization. Compound 34 could be a valuable lead compound for further research on safe and effective Cat K inhibitors.


Asunto(s)
Resorción Ósea , Humanos , Catepsina K , Resorción Ósea/metabolismo , Osteoclastos , Nitrilos/química , Ligandos , Catepsinas
20.
Artículo en Inglés | MEDLINE | ID: mdl-35921699

RESUMEN

Er-Zhi-Wan (EZW), a classical traditional Chinese formulation, has attracted more and more attention. This study was carried out to analyze the constituents of EZW absorbed into blood and find out the potential active ingredients for treating osteoporosis (OP) with kidney-yin deficiency (KYD). The rat model of OP with KYD was achieved by ovariectomies and using the mixture of thyroxine and reserpine. Then ultra-high performance liquid chromatography coupled with a quadrupole time-of-flight mass spectrometer (UPLC-Q/TOF-MS) combined with statistical analysis was used to analyze the constituents of EZW absorbed into blood and differential components between the normal and OP with KYD rats. Finally, the components identified in OP with KYD rats were docked with targets of OP with KYD found in online databases. The results of molecular docking were adopted to find the potential active ingredients and further verified in vitro experiment. A total of 21 prototype compounds and 69 metabolites were identified in serum. Among them, 63 components in model rats and 50 components in normal rats were summarized, respectively. Most of the identified metabolites in serum of model rats were produced by hydrolysis, oxidation or glucuronidation, while in serum of normal rats were produced by hydrolysis, oxidation and methylation. According to the results of molecular docking, specnuezhenide, salidroside, tyrosol, echinacoside and verbascoside could be classified as potential active ingredients. The activity of salidroside and a metabolite was verified by pharmacodynamics analysis. In summary, UPLC-Q/TOF-MS system was combined with molecular docking to search the potential active ingredients from model rats of OP with KYD, which provided a new idea for the research on the pharmacodynamic material basis of other traditional medicine. Moreover, the result of this study lays the foundation for further study regarding the mechanism of EZW in treating OP with KYD.


Asunto(s)
Medicamentos Herbarios Chinos , Osteoporosis , Animales , China , Cromatografía Líquida de Alta Presión/métodos , Riñón/química , Simulación del Acoplamiento Molecular , Ratas , Deficiencia Yin
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA