Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Res ; 229: 115998, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37127103

RESUMEN

As a recycling use of waste activated sludge (WAS), we used high-temperature pyrolysis of WAS to support bimetallic Fe-Mn with nitrogen (N) co-doping (FeMn@N-S), a customized composite catalyst that activates peroxysulphate (PS) for the breakdown of tetracycline (TC). First, the performance of TC degradation was evaluated and optimized under different N doping, pH, catalyst dosages, PS dosages, and contaminant concentrations. Activating PS with FeMn@N-S caused the degradation of 91% of the TC in 120 min. Next, characterization of FeMn@N-S by XRD, XPS and FT-IR analysis highlights N doping is beneficial to take shape more active sites and reduces the loss of Fe and Mn during the degradation reaction. As expected, the presence of Fe-Mn bimetallic on the catalyst surface increases the rate of electron transfer, promoting the redox cycle of the catalyst. Other functional groups on the catalyst surface, such as oxygen-containing groups, accelerated the electron transfer during PS activation. Free radical quenching and ESR analysis suggest that the main contributor to TC degradation is surface-bound SO4•-, along with the presence of single linear oxygen (1O2) oxidation pathway. Finally, the FeMn@N-S composite catalyst exhibits excellent pH suitability and reusability, indicating a solid practicality of this catalyst in PS-based removal of antibiotics from wastewater.


Asunto(s)
Aguas del Alcantarillado , Contaminantes Químicos del Agua , Nitrógeno/análisis , Espectroscopía Infrarroja por Transformada de Fourier , Tetraciclina/química , Antibacterianos , Oxígeno/análisis , Contaminantes Químicos del Agua/análisis
2.
Chemosphere ; 328: 138614, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37023899

RESUMEN

In this study, SiO2-composited biochar decorated with Fe/Mn was prepared by co-pyrolysis method. The degradation performance of the catalyst was evaluated by activating persulfate (PS) to degrade tetracycline (TC). The effects of pH, initial TC concentration, PS concentration, catalyst dosage and coexisting anions on degradation efficiency and kinetics of TC were investigated. Under optimal conditions (TC = 40 mg L-1, pH = 6.2, PS = 3.0 mM, catalyst = 0.1 g L-1), the kinetic reaction rate constant could reach 0.0264 min-1 in Fe2Mn1@BC-0.3SiO2/PS system, which was 12 times higher than that in the BC/PS system (0.00201 min-1). The electrochemical, X-ray diffractometer (XRD), Fourier transform infrared spectrum (FT-IR) and X-ray photoelectron spectroscopy (XPS) analysis showed that both metal oxides and oxygen-containing functional groups provide more active sites to activate PS. The redox cycle between Fe(II)/Fe(III) and Mn(II)/Mn(III)/Mn(IV) accelerated the electron transfer and sustained the catalytic activation of PS. Radical quenching experiments and electron spin resonance (ESR) measurements confirmed that surface sulfate radical (SO4•-) play a key role in TC degradation. Three possible degradation pathways of TC were proposed based on high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS) analysis, the toxicity of TC and its intermediates was analyzed by bioluminescence inhibition test. In addition to the enhanced catalytic performance, the presence of silica also improved the stability of the catalyst, as confirmed by cyclic experiment and metal ion leaching analysis. The Fe2Mn1@BC-0.3SiO2 catalyst, derived from low-cost metals and bio-waste materials, offer an environmentally friendly option to design and implement heterogenous catalyst system for pollutant removal in water.


Asunto(s)
Aguas del Alcantarillado , Dióxido de Silicio , Compuestos Férricos/química , Espectroscopía Infrarroja por Transformada de Fourier , Tetraciclina/química , Antibacterianos/química , Carbón Orgánico/química
3.
Sci Total Environ ; 818: 151787, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-34808190

RESUMEN

Pressurized vertical electro-osmotic dewatering (PVEOD) has been regarded as a feasible method to achieve sludge deep-dewatering, but the dewatering efficiency is still challenged by high electric resistance. This study employed cationic polyacrylamide (CPAM) as a skeleton builder to enhance electro-osmotic flow in PVEOD. The sludge dewatering efficiency and synergistic effect of CPAM and PVEOD were elucidated. The sludge morphology, surface property, extracellular polymeric substances (EPS) destruction and migration, spatial distributions of proteins and polysaccharides, and current changes were investigated. After the addition of optimal CPAM dose, the sludge formed a uniform and porous structure that provided water channels and enhanced electric transport, thus promoting EPS destruction. The sludge moisture content (MC) analysis indicated the more liberation of bound water due to EPS destruction. Besides, the re-flocculation of disintegrated sludge flocs improved the sludge filtration and thus dewaterability. Instantaneous energy consumption (Et,0.5) was optimized and two-step synergistic mechanism was thus proposed. These findings indicated that the combination of CPAM and PVEOD is a promising strategy to broaden the scope of industrial application of sludge deep-dewatering.


Asunto(s)
Resinas Acrílicas , Aguas del Alcantarillado , Resinas Acrílicas/química , Matriz Extracelular de Sustancias Poliméricas , Floculación , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Agua/química
4.
Diabetes Metab Syndr Obes ; 14: 1183-1193, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33758526

RESUMEN

INTRODUCTION: Diabetic retinopathy (DR) is a damaging complication of the eye. Studies investigating molecular mechanisms of DR are lacking, leading to poor clinical outcomes. miR-20b-5p is up-regulated in DR. The present study aimed to confirm the involvement of miR-20b-5p in DR and the mechanism involved. METHODS: Microarray analysis was done to study the differentially expressed miRs. DR model was established using Sprague-Dawley rats, the expression of miR-20b-5p was altered using inhibitor or mimic as treatment. THBS1 was one of the potential genes identified by microarray bioinformatics analysis associated with DR. The expression of THBS1 was suppressed by siRNA to study the mechanism behind involvement of miR-20b-5p in DR. In addition, the levels of miR-20b-5p VEGF/PI3K/Akt pathway associated genes were studied. Correlation between THBS1 and miR-20b-5p was evaluated. Cell apoptosis, growth and tube formation assay was performed. RESULTS: The retinal tissues of DR rats showed over-expressed miR-20b-5p and decreased THBS1 via VEGF/PI3K/Akt cascade. THBS1 was confirmed as the target gene of miR-20b-5p by dual-luciferase reporter gene assay. Upregulation of miR-20b-5p or knockdown of THBS1 caused increased tube formation and cell proliferation, whereas it blocked the cell apoptosis of endothelial cells in rats. CONCLUSION: The outcomes suggested that silencing of miR-20b-5p resulted in inhibition of tube formation and cell growth in vascular endothelial cells of rats subjected to DR altering the VEGF/PI3K/Akt cascade by up-regulation of THBS1.

5.
J Hazard Mater ; 405: 124228, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33246821

RESUMEN

The heterogeneous catalytic process has been under development for aqueous pollutant degradation, yet electron transfer efficiency often limits the effectiveness of catalytic reactions. In this study, a novel composite material, manganese doped iron-carbon (Mn-Fe-C), was tailor designed to promote the catalytic electron transfer. The Mn-Fe-C composite, synthesized via a facile carbothermal reduction method, was characterized and evaluated for its performance to activate persulfate (PS) and degrade Rhodamine Blue (RhB) dye under different pH, catalyst dosages, PS dosages, and pollutant concentrations. Electron spin resonance, along with quenching results by ethanol, tert-butanol, phenol, nitrobenzene and benzoquinone, indicated that surface bounded SO4•- was the main contributor for RhB degradation, while the roles of aqueous SO4•- and •OH were very minor. Through characterization by XRD, XPS and FTIR analysis, it was determined that the electron transfer during activation of PS was accelerated by the oxygen functional groups on catalyst surface and the promoted redox cycle of Fe3+ and Fe2+ by Mn. Finally, the Mn-Fe-C composite catalyst exhibited an excellent reusability and stability with negligible leached Fe and Mn ions in solutions. Results of this study provide a promising design for heterogeneous catalysts that can effectively activate PS to remove organic pollutants from water at circumneutral pH conditions.

6.
Sci Rep ; 9(1): 13878, 2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31554910

RESUMEN

In this study, to fabricate stable floating photocatalytic spheres, facile alcohol solvothermal reduction was first employed to modify commercial TiO2 (P25) photocatalysts to harvest visible light and improve their performances for photodegrading phenol in seawater exciting by visible light. Floating photocatalytic spheres were then prepared by loading reduced P25 photocatalysts on inner and outer surfaces of acrylic hollow spheres. The structural characterizations showed that reduction of P25 introduced disorder-crystalline shell-core structures with present Ti3+ in reduced P25 photocatalysts. These features facilitated visible light response and phenol degradation in seawater under visible light irradiation. As reduction time or temperature of alcohol solvothermal process rose, more Ti3+ and shell-core structures were introduced into reduced P25, resulting in higher performances towards phenol degradation in seawater. However, extended periods of time and elevated temperatures decreased disordered layer of reduced P25, deteriorating the photocatalytic performances. Thanks to good light transmission of the hollow spheres and the high performance of the reduced P25, the photocatalytic performances of spheres loaded with reduced P25 could effectively degrade phenol in seawater even at low concentrations. The removal rate of phenol by floating spheres reached more than 95% after 8 h. In addition, the floating spheres displayed good stability and convenient reusability after six repeated photocatalytic degradation for phenol in seawater, promising features for future treatment of organic pollutants in oceans.

7.
Ultrason Sonochem ; 42: 609-618, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29429709

RESUMEN

The dewatering of waste activated sludge by integrated hydrodynamic cavitation (HC) and Fenton reaction was explored in this study. We first investigated the effects of initial pH, sludge concentration, flow rate, and H2O2 concentration on the sludge dewaterability represented by water content, capillary suction time and specific resistance to filtration. The results of dewatering tests showed that acidic pH and low sludge concentration were favorable to improve dewatering performance in the HC/Fenton system, whereas optimal flow rate and H2O2 concentration applied depended on the system operation. To reveal the synergism of HC/Fenton treatment, a suite of analysis were implemented: three-dimensional excitation emission matrix (3-DEEM) spectra of extracellular polymeric substances (EPS) such as proteins and polysaccharides, zeta potential and particle size of sludge flocs, and SEM/TEM imaging of sludge morphology. The characterization results indicate a three-step mechanism, namely HC fracture of different EPS in sludge flocs, Fenton oxidation of the released EPS, and Fe(III) re-flocculation, that is responsible for the synergistically enhanced sludge dewatering. Results of current study provide a basis to improve our understanding on the sludge dewatering performance by HC/Fenton treatment and possible scale-up of the technology for use in wastewater treatment plants.

8.
Environ Sci Technol ; 51(11): 6202-6210, 2017 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-28488850

RESUMEN

Two kinds of isocyanate were used to modify graphene oxide (GO) samples. Then, polyimide (PI) hybrid membranes containing GO and modified GO were prepared by in situ polymerization. The permeation of CO2 and N2 was studied using these novel membranes. The morphology experiments showed that the isocyanate groups were successfully grafted on the surface of GO by replacement of the oxygen-containing functional groups. After modification, the surface polarity of the GO increased, and more defect structures were introduced into the GO surface. This resulted in a good distribution of more modified GO samples in the PI polymer matrix. Thus, the PI hybrid membranes incorporated by modified GO samples showed a high gas permeability and ideal selectivity of membranes. In addition, enhancement of the selectivity due to the solubility of CO2 played a major role in the increase in the separation performance of the hybrid membranes for CO2, although the diffusion coefficients for CO2 also increased. Both the higher condensability and the strong affinity between CO2 molecules and GO in the polymer matrix caused an enhancement of the solubility selectivity higher than the diffusion selectivity after GO surface modification.


Asunto(s)
Dióxido de Carbono , Grafito , Membranas Artificiales , Óxidos , Polimerizacion , Polímeros
9.
Biotechnol Biofuels ; 10: 86, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28405217

RESUMEN

BACKGROUND: As a natural renewable biomass, the tea oil fruit hull (TOFH) mainly consists of lignocellulose, together with some bioactive substances. Our earlier work constructed a two-stage solvent-based process, including one aqueous ethanol organosolv extraction and an atmospheric glycerol organosolv (AGO) pretreatment, for bioprocessing of the TOFH into diverse bioproducts. However, the AGO pretreatment is not as selective as expected in removing the lignin from TOFH, resulting in the limited delignification and simultaneously high cellulose loss. RESULTS: In this study, acetic acid organosolv (AAO) pretreatment was optimized with experimental design to fractionate the TOFH selectively. Alkaline hydrogen peroxide (AHP) pretreatment was used for further delignification. Results indicate that the AAO-AHP pretreatment had an extremely good selectivity at component fractionation, resulting in 92% delignification and 88% hemicellulose removal, with 87% cellulose retention. The pretreated substrate presented a remarkable enzymatic hydrolysis of 85% for 48 h at a low cellulase loading of 3 FPU/g dry mass. The hydrolyzability was correlated with the composition and structure of substrates by using scanning electron microscopy, confocal laser scanning microscopy, and X-ray diffraction. CONCLUSION: The mild AAO-AHP pretreatment is an environmentally benign and advantageous scheme for biorefinery of the agroforestry biomass into value-added bioproducts.

10.
Sci Total Environ ; 580: 966-973, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-27989475

RESUMEN

Bimetallic oxide CuFeO2 as a new heterogeneous catalyst has shown much higher catalytic ability for activating peroxide than single-metal oxides. The present work demonstrated a synergistic microwave (MW) enhanced Fenton-like process with CuFeO2 for rapid decolorization of azo dye Orange G (OG). The MW irradiation dramatically enhanced the OG degradation efficiency, achieving 99.9% decolorization within 15min at pH5. The XRD analysis of reused CuFeO2, together with metal leaching tests, indicated merits of recycling for CuFeO2. The subsequent surface element analysis by XPS for fresh and used CuFeO2 showed a complex network for reactions between copper-iron redox pairs and surface hydroxyl groups, leading to a synergistic Fenton-like system accelerated by MW irradiation. In the CuFeO2 initiated Fenton-like reactions, several oxidant species (i.e., OH, O2-, electron hole, and FeIVO) responsible to the OG oxidation were identified by quenching experiments, showing the MW generated high temperature and "hot spots" enhanced the yield of OH by generation of electron-hole pairs. Further, the 26 detected degradation products confirmed the OH dominant oxidation of OG. This study shows that the MW-enhanced Fenton-like reaction using CuFeO2 has potential applications for rapid decolorization of dye effluent.

11.
J Chromatogr A ; 1459: 38-46, 2016 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-27425762

RESUMEN

A planar graphene oxide-based magnetic ionic liquid nanomaterial (PGO-MILN) was synthesized. The prepared PGO-MILN was characterized by transmission electronmicroscopy (TEM) and Fourier-transform infrared spectrometry (FTIR). The results of adsorption experiments showed that the PGO-MILN had great adsorption capacity for 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP) and pentachlorophenol (PCP). Based on the adsorption experimental data, a sensitive magnetic method for determination of the five CPs in environmental water samples was developed by an effective magnetic solid-phase extraction (MSPE) procedure coupled with high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). The effects of main MSPE parameters including the solution pH, extraction time, desorption time, and volume of desorption solution on the extraction efficiencies had been investigated in detail. The recoveries ranged from 85.3 to 99.3% with correlation coefficients (r) higher than 0.9994 and the linear ranges were between 10 and 500ngL(-1). The limits of detection (LODs) and limits of quantification (LOQs) of the five CPs ranged from 0.2 to 2.6ngL(-1) and 0.6 to 8.7ngL(-1), respectively. The intra- and inter- day relative standard deviations (RSDs) were in the range from 0.6% to 7.4% and from 0.7% to 8.4%, respectively. It was confirmed that the PGO-MILN was a kind of highly effective MSPE materials used for enrichment of trace CPs in the environmental water.


Asunto(s)
Clorofenoles/análisis , Cromatografía Líquida de Alta Presión , Grafito/química , Líquidos Iónicos/química , Nanoestructuras/química , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua/análisis , Adsorción , Óxido Ferrosoférrico/química , Concentración de Iones de Hidrógeno , Límite de Detección , Magnetismo , Microscopía Electrónica de Transmisión , Óxidos/química , Dióxido de Silicio/química , Extracción en Fase Sólida , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/aislamiento & purificación
12.
Ultrason Sonochem ; 31: 193-200, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26964940

RESUMEN

In this study, a successful decolorization of Orange G was achieved by means of coupling zero valent iron (ZVI), H2O2 and ultrasound (US) under acidic pH conditions. The synergistic effect and characterization of potential roles of the factors including ZVI, tert-Butanol as radical scavenger, dissolved ferrous ions and H2O2 generated from sonication were evaluated in this sono-advanced Fenton process (SAFP) system. A clear synergy was evident in terms of decolorization rate and the TOC removal as the input of US enhanced the activity of the Fe(0)/H2O2 system. The results suggested that the ZVI was potential replacement for the Fe(2+) ion. This remarkable activity was attributed to the capacity of Fe(2+) formed and reduction of sonic-dissolved Fe(2+) concentration by the formation of {Fe·Fe(2+)}. The modification of the condition of H2O2 addition such as the dosage and input method showed significant variations in terms of decolorization rate. This result indicated that the optimal external addition of H2O2 and input method is a limited factor of decolorization rate due to its comparatively insufficient generated by ultrasound.

13.
Ultrason Sonochem ; 28: 302-310, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26384912

RESUMEN

The present work demonstrates the application of the combination of hydrodynamic cavitation (HC) and the heterogeneous Fenton process (HF, Fe(0)/H2O2) for the decolorization of azo dye Orange G (OG). The effects of main affecting operation conditions such as the inlet fluid pressure, initial concentration of OG, H2O2 and zero valent iron (ZVI), the fixed position of ZVI, and medium pH on decolorization efficiency were discussed with guidelines for selection of optimum parameters. The results revealed that the acidic conditions are preferred for OG decolorizaiton. The decolorization rate increased with increasing H2O2 and ZVI concentration and decreased with increasing OG initial concentration. Besides, the decolorization rate was strongly dependent on the fixed position of ZVI. The analysis results of degradation products using liquid chromatography-ESI-TOF mass spectrometry revealed that the degradation mechanism of OG proceeds mainly via reductive cleavage of the azo linkage due to the attack of hydroxyl radical. The present work has conclusively established that the combination of HC and HF can be more energy efficient and gives higher decolorization rate of OG as compared with HC and HF alone.

14.
Huan Jing Ke Xue ; 34(7): 2574-81, 2013 Jul.
Artículo en Chino | MEDLINE | ID: mdl-24027985

RESUMEN

Lake Qiandao is a typical subtropical man-made reservoir in China. The investigation on the seasonal and vertical dynamics of water temperature, dissolved oxygen (DO), pH value, turbidity, photosynthetic available radiation (PAR) and chlorophyll a was conducted in 2011 in order to find out the physical characteristics of Lake Qiandao. The average surface water temperature ranged from 10.4 to 32.7 degrees C. A monomictic thermal stratification was observed in Lake Qiandao, initiating in April and lasting until December. The results showed that thermal stratification had influences on vertical distribution of DO, pH value, turbidity, PAR and chlorophyll a. Very strong stratification of DO was found, inducing lower oxygen concentration in the thermocline layer and temporal hypoxia in the bottom water. The maximum turbidity was found in the thermocline layer and the precipitation affected the surface turbidity value. Moreover, the chlorophyll a concentration was higher in the surface water and lower in the bottom water as found in this study, implying that water quality was affected by stratification. Besides, the maximum photosynthesis rate and algal growth rate were found at the depth 5-10 m below the water surface. Therefore, the results can provide theoretical support for the sampling and analysis of algal blooms in Lake Qiandao.


Asunto(s)
Monitoreo del Ambiente , Agua Dulce/química , Temperatura , Calidad del Agua , China , Clorofila/análisis , Clorofila A , Concentración de Iones de Hidrógeno , Lagos/química , Oxígeno/análisis , Estaciones del Año , Solubilidad , Clima Tropical , Movimientos del Agua
15.
Environ Technol ; 33(10-12): 1289-98, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22856301

RESUMEN

The effect of aerator module configuration, liquid flow rate and diffuser submergence on oxygen transfer efficiency was examined in a surface aeration system with venturi injectors using the clean water test. Six venturi aerator modules were evaluated and the results indicated that better aeration efficiencies could be achieved by simply changing the way the venturi aerators were connected. Among all the configurations examined (modules a-f), two and three aerators connected in parallel (modules d, e and f) were able to bring more oxygen into water than the others. An increase in liquid flow rate led to an enhancement of the oxygen transfer coefficients, but the improvement was reduced if the liquid flow rate was too high. The oxygen transfer coefficient was found to have a relationship with the depth of diffusing pipes (surface aeration depth) for the surface aeration system and an optimal depth of around 40 cm was obtained from this study.


Asunto(s)
Aire , Administración de Residuos/métodos , Estiércol , Oxígeno , Aguas del Alcantarillado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA