RESUMEN
Background: Cardiovascular comorbidities such as hypertension and inflammatory response dysregulation are associated with worse COVID-19 prognoses. Different cytokines have been proposed to play vital pathophysiological roles in COVID-19 progression, but appropriate prognostic biomarkers remain lacking. We hypothesized that the combination of immunological and clinical variables at admission could predict the clinical progression of COVID-19 in hypertensive patients. Methods: The levels of biomarkers, including C-reactive protein, lymphocytes, monocytes, and a panel of 29 cytokines, were measured in blood samples from 167 hypertensive patients included in the BRACE-CORONA trial. The primary outcome was the highest score during hospitalization on the modified WHO Ordinal Scale for Clinical Improvement. The probability of progression to severe disease was estimated using a logistic regression model that included clinical variables and biomarkers associated significantly with the primary outcome. Results: During hospitalization, 13 (7.8%) patients showed progression to more severe forms of COVID-19, including three deaths. Obesity, diabetes, oxygen saturation, lung involvement on computed tomography examination, the C-reactive protein level, levels of 15 cytokines, and lymphopenia on admission were associated with progression to severe COVID-19. Elevated levels of interleukin-10 and interleukin-12 (p70) combined with two or three of the abovementioned clinical comorbidities were associated strongly with progression to severe COVID-19. The risk of progression to severe disease reached 97.5% in the presence of the five variables included in our model. Conclusions: This study demonstrated that interleukin-10 and interleukin-12 (p70) levels, in combination with clinical variables, at hospital admission are key biomarkers associated with an increased risk of disease progression in hypertensive patients with COVID-19.
RESUMEN
Importance: It is unknown whether angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin II receptor blockers (ARBs) have a positive, neutral, or negative effect on clinical outcomes in patients with coronavirus disease 2019 (COVID-19). Objective: To determine whether discontinuation compared with continuation of ACEIs or ARBs changed the number of days alive and out of the hospital through 30 days. Design, Setting, and Participants: A randomized clinical trial of 659 patients hospitalized in Brazil with mild to moderate COVID-19 who were taking ACEIs or ARBs prior to hospitalization (enrolled: April 9-June 26, 2020; final follow-up: July 26, 2020). Interventions: Discontinuation (n = 334) or continuation (n = 325) of ACEIs or ARBs. Main Outcomes and Measures: The primary outcome was the number of days alive and out of the hospital through 30 days. Secondary outcomes included death, cardiovascular death, and COVID-19 progression. Results: Among 659 patients, the median age was 55.1 years (interquartile range [IQR], 46.1-65.0 years), 14.7% were aged 70 years or older, 40.4% were women, and 100% completed the trial. The median time from symptom onset to hospital admission was 6 days (IQR, 4-9 days) and 27.2% of patients had an oxygen saturation of less than 94% of room air at baseline. In terms of clinical severity, 57.1% of patients were considered mild at hospital admission and 42.9% were considered moderate. There was no significant difference in the number of days alive and out of the hospital in patients in the discontinuation group (mean, 21.9 days [SD, 8 days]) vs patients in the continuation group (mean, 22.9 days [SD, 7.1 days]) and the mean ratio was 0.95 (95% CI, 0.90-1.01). There also was no statistically significant difference in death (2.7% for the discontinuation group vs 2.8% for the continuation group; odds ratio [OR], 0.97 [95% CI, 0.38-2.52]), cardiovascular death (0.6% vs 0.3%, respectively; OR, 1.95 [95% CI, 0.19-42.12]), or COVID-19 progression (38.3% vs 32.3%; OR, 1.30 [95% CI, 0.95-1.80]). The most common adverse events were respiratory failure requiring invasive mechanical ventilation (9.6% in the discontinuation group vs 7.7% in the continuation group), shock requiring vasopressors (8.4% vs 7.1%, respectively), acute myocardial infarction (7.5% vs 4.6%), new or worsening heart failure (4.2% vs 4.9%), and acute kidney failure requiring hemodialysis (3.3% vs 2.8%). Conclusions and Relevance: Among patients hospitalized with mild to moderate COVID-19 and who were taking ACEIs or ARBs before hospital admission, there was no significant difference in the mean number of days alive and out of the hospital for those assigned to discontinue vs continue these medications. These findings do not support routinely discontinuing ACEIs or ARBs among patients hospitalized with mild to moderate COVID-19 if there is an indication for treatment. Trial Registration: ClinicalTrials.gov Identifier: NCT04364893.