RESUMEN
Background: Brazil is a unique and understudied setting for malaria, with complex foci of transmission associated with human and environmental conditions. An understanding of the population genomic diversity of P. vivax parasites across Brazil can support malaria control strategies. Methods: Through whole genome sequencing of P. vivax isolates across 7 Brazilian states, we use population genomic approaches to compare genetic diversity within country (n = 123), continent (6 countries, n = 315) and globally (26 countries, n = 885). Findings: We confirm that South American isolates are distinct, have more ancestral populations than the other global regions, with differentiating mutations in genes under selective pressure linked to antimalarial drugs (pvmdr1, pvdhfr-ts) and mosquito vectors (pvcrmp3, pvP45/48, pvP47). We demonstrate Brazil as a distinct parasite population, with signals of selection including ABC transporter (PvABCI3) and PHIST exported proteins. Interpretation: Brazil has a complex population structure, with evidence of P. simium infections and Amazonian parasites separating into multiple clusters. Overall, our work provides the first Brazil-wide analysis of P. vivax population structure and identifies important mutations, which can inform future research and control measures. Funding: AI is funded by an MRC LiD PhD studentship. TGC is funded by the Medical Research Council (Grant no. MR/M01360X/1, MR/N010469/1, MR/R025576/1, MR/R020973/1 and MR/X005895/1). SC is funded by Medical Research Council UK grants (MR/M01360X/1, MR/R025576/1, MR/R020973/1 and MR/X005895/1) and Bloomsbury SET (ref. CCF17-7779). FN is funded by The Shloklo Malaria Research Unit - part of the Mahidol Oxford Research Unit, supported by the Wellcome Trust (Grant no. 220211). ARSB is funded by São Paulo Research Foundation - FAPESP (Grant no. 2002/09546-1). RLDM is funded by Brazilian National Council for Scientific and Technological Development - CNPq (Grant no. 302353/2003-8 and 471605/2011-5); CRFM is funded by FAPESP (Grant no. 2020/06747-4) and CNPq (Grant no. 302917/2019-5 and 408636/2018-1); JGD is funded by FAPESP fellowships (2016/13465-0 and 2019/12068-5) and CNPq (Grant no. 409216/2018-6).
RESUMEN
BACKGROUND: Pregnant women have increased susceptibility to Plasmodium falciparum malaria and acquire protective antibodies over successive pregnancies. Most studies that investigated malaria antibody responses in pregnant women are from high transmission areas in sub-Saharan Africa, while reports from Latin America are scarce and inconsistent. The present study sought to explore the development of antibodies against P. falciparum and Plasmodium vivax antigens in pregnant women living in a low transmission area in the Brazilian Amazon. METHODS: In a prospective cohort study, plasma samples from 408 pregnant women (of whom 111 were infected with P. falciparum, 96 had infections with P. falciparum and P. vivax, and 201 had no Plasmodium infection) were used to measure antibody levels. Levels of IgG and opsonizing antibody to pregnancy-specific variant surface antigens (VSAs) on infected erythrocytes (IEs), 10 recombinant VAR2CSA Duffy binding like (DBL domains), 10 non-pregnancy-specific P. falciparum merozoite antigens, and 10 P. vivax antigens were measured by flow cytometry, ELISA, and multiplex assays. Antibody levels and seropositivity among the groups were compared. RESULTS: Antibodies to VSAs on P. falciparum IEs were generally low but were higher in currently infected women and women with multiple P. falciparum episodes over pregnancy. Many women (21%-69%) had antibodies against each individual VAR2CSA DBL domain, and antibodies to DBLs correlated with each other (r ≥ 0.55, p < 0.0001), but not with antibody to VSA or history of infection. Infection with either malaria species was associated with higher seropositivity rate for antibodies against P. vivax proteins, adjusted odds ratios (95% CI) ranged from 5.6 (3.2, 9.7), p < 0.0001 for PVDBPII-Sal1 to 15.7 (8.3, 29.7), p < 0.0001 for PvTRAg_2. CONCLUSIONS: Pregnant Brazilian women had low levels of antibodies to pregnancy-specific VSAs that increased with exposure. They frequently recognized both VAR2CSA DBL domains and P. vivax antigens, but only the latter varied with infection. Apparent antibody prevalence is highly dependent on the assay platform used.
Asunto(s)
Malaria Falciparum , Malaria Vivax , Malaria , Embarazo , Femenino , Humanos , Plasmodium falciparum , Brasil/epidemiología , Plasmodium vivax , Mujeres Embarazadas , Estudios Prospectivos , Antígenos de Protozoos , Malaria Falciparum/epidemiología , Malaria Vivax/epidemiología , Antígenos de SuperficieRESUMEN
Placental malaria (PM) is associated with severe inflammation leading to abortion, preterm delivery, and intrauterine growth restriction. Innate immunity responses play critical roles, but the mechanisms underlying placental immunopathology are still unclear. Here, we investigated the role of inflammasome activation in PM by scrutinizing human placenta samples from an endemic area and ablating inflammasome components in a PM mouse model. The reduction in birth weight in babies from infected mothers is paralleled by increased placental expression of AIM2 and NLRP3 inflammasomes. Using genetic dissection, we reveal that inflammasome activation pathways are involved in the production and detrimental action of interleukin-1ß (IL-1ß) in the infected placenta. The IL-1R pharmacological antagonist Anakinra improved pregnancy outcomes by restoring fetal growth and reducing resorption in an experimental model. These findings unveil that IL-1ß-mediated signaling is a determinant of PM pathogenesis, suggesting that IL-1R antagonists can improve clinical outcomes of malaria infection in pregnancy.
Asunto(s)
Inflamasomas/efectos de los fármacos , Interleucina-1beta/inmunología , Malaria Falciparum/inmunología , Malaria/inmunología , Plasmodium falciparum/patogenicidad , Complicaciones Parasitarias del Embarazo/inmunología , Transducción de Señal/efectos de los fármacos , Animales , Caspasa 1/genética , Caspasa 1/inmunología , Línea Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Femenino , Regulación de la Expresión Génica , Humanos , Inmunidad Innata , Factores Inmunológicos/farmacología , Inflamasomas/genética , Inflamasomas/inmunología , Interferón gamma/genética , Interferón gamma/inmunología , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Interleucina-1beta/antagonistas & inhibidores , Interleucina-1beta/genética , Malaria/tratamiento farmacológico , Malaria/genética , Malaria/parasitología , Malaria Falciparum/genética , Malaria Falciparum/parasitología , Malaria Falciparum/patología , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Plasmodium berghei/inmunología , Plasmodium berghei/patogenicidad , Plasmodium falciparum/inmunología , Embarazo , Complicaciones Parasitarias del Embarazo/genética , Complicaciones Parasitarias del Embarazo/parasitología , Complicaciones Parasitarias del Embarazo/prevención & control , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/inmunología , Transducción de Señal/inmunología , Células THP-1 , Trofoblastos/efectos de los fármacos , Trofoblastos/inmunología , Trofoblastos/parasitología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunologíaRESUMEN
Although Plasmodium vivax parasites are the predominant cause of malaria outside of sub-Saharan Africa, they not always prioritised by elimination programmes. P. vivax is resilient and poses challenges through its ability to re-emerge from dormancy in the human liver. With observed growing drug-resistance and the increasing reports of life-threatening infections, new tools to inform elimination efforts are needed. In order to halt transmission, we need to better understand the dynamics of transmission, the movement of parasites, and the reservoirs of infection in order to design targeted interventions. The use of molecular genetics and epidemiology for tracking and studying malaria parasite populations has been applied successfully in P. falciparum species and here we sought to develop a molecular genetic tool for P. vivax. By assembling the largest set of P. vivax whole genome sequences (n = 433) spanning 17 countries, and applying a machine learning approach, we created a 71 SNP barcode with high predictive ability to identify geographic origin (91.4%). Further, due to the inclusion of markers for within population variability, the barcode may also distinguish local transmission networks. By using P. vivax data from a low-transmission setting in Malaysia, we demonstrate the potential ability to infer outbreak events. By characterising the barcoding SNP genotypes in P. vivax DNA sourced from UK travellers (n = 132) to ten malaria endemic countries predominantly not used in the barcode construction, we correctly predicted the geographic region of infection origin. Overall, the 71 SNP barcode outperforms previously published genotyping methods and when rolled-out within new portable platforms, is likely to be an invaluable tool for informing targeted interventions towards elimination of this resilient human malaria.
Asunto(s)
Brotes de Enfermedades/prevención & control , Genoma de Protozoos/genética , Técnicas de Genotipaje/métodos , Malaria Vivax/transmisión , Plasmodium vivax/genética , África Oriental , Asia , Conjuntos de Datos como Asunto , Erradicación de la Enfermedad/métodos , Marcadores Genéticos/genética , Genotipo , Geografía , Humanos , Malaria Vivax/epidemiología , Malaria Vivax/parasitología , Metadatos , Repeticiones de Microsatélite/genética , Plasmodium vivax/aislamiento & purificación , Polimorfismo de Nucleótido Simple/genética , Valor Predictivo de las Pruebas , América del Sur , Enfermedad Relacionada con los Viajes , Reino Unido , Secuenciación Completa del GenomaRESUMEN
Malaria in pregnancy is a public health concern in malaria-endemic areas. Accumulation of maternal immune cells in the placenta and increased levels of inflammatory cytokines caused by sequestration of Plasmodium falciparum-infected erythrocytes have been associated to poor neonatal outcomes, including low birth weight because of fetal growth restriction. Little is known about the molecular changes occurring in a P. falciparum-infected placenta that has developed placental malaria during pregnancy but had the parasites cleared by pharmacological treatment (past infection). We conducted an integrated proteome, phosphoproteome and glycoproteome analysis in past P. falciparum-infected placentas aiming to find molecular changes associated with placental malaria. A total of 2946 proteins, 1733 N-linked glycosites and 4100 phosphosites were identified and quantified in this study, disclosing overrepresented processes related to oxidative stress, protein folding and regulation of apoptosis in past-infected placentas Moreover, AKT and ERK signaling pathways activation, together with clinical data, were further correlated to an increased apoptosis in past-infected placentas. This study showed apoptosis-related mechanisms associated with placental malaria that can be further explored as therapeutic target against adverse pregnancy outcomes.
Asunto(s)
Malaria Falciparum/metabolismo , Placenta/metabolismo , Complicaciones Parasitarias del Embarazo/metabolismo , Proteómica/métodos , Animales , Modelos Animales de Enfermedad , Femenino , Glicosilación , Humanos , Sistema de Señalización de MAP Quinasas , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Ratones , Fosforilación , Placenta/parasitología , Embarazo , Complicaciones Parasitarias del Embarazo/tratamiento farmacológico , Mapas de Interacción de ProteínasRESUMEN
Zika virus infections can cause a range of neurologic disorders including congenital microcephaly. However, while Zika infections have been notified across all regions in Brazil, there has been an unusual number of congenital microcephaly case notifications concentrated in the Northeast of the country. To address this observation, we investigated epidemiological data (2014-2016) on arbovirus co-distribution, environmental and socio-economic factors for each region in Brazil. Data on arbovirus reported cases and microcephaly were collected from several Brazilian Ministry of Health databases for each Federal unit. These were complemented by environmental management, social economic and Aedes aegypti infestation index data, extracted from multiple databases. Spatial time "ecological" analysis on the number of arboviruses transmitted by Aedes mosquitoes in Brazil show that the distribution of dengue and Zika was widespread in the whole country, with higher incidence in the West-Central region. However, reported chikungunya cases were higher in the Northeast, the region also with the highest number of microcephaly cases registered. Social economic factors (human development index and poverty index) and environmental management (water supply/storage and solid waste management) pointed the Northeast as the less wealthy region. The Northeast is also the region with the highest risk of Aedes aegypti house infestation due to the man-made larval habitats. In summary, the results of our ecological analysis support the hypothesis that the unusual distribution of microcephaly might not be due to Zika infection alone and could be accentuated by poverty and previous or co-infection with other pathogens. Our study reinforces the link between poverty and the risk of disease and the need to understand the effect on pathogenesis of sequential exposure to arboviruses and co-viral infections. Comprehensive large-scale cohort studies are required to corroborate our findings. We recommend that the list of infectious diseases screened, particularly during pregnancy, be regularly updated to include and effectively differentiate all viruses from ongoing outbreaks.
Asunto(s)
Aedes/crecimiento & desarrollo , Bases de Datos Factuales , Ecosistema , Pobreza , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/transmisión , Virus Zika , Animales , Brasil , Femenino , Humanos , Incidencia , Lactante , Recién Nacido , Larva/crecimiento & desarrollo , Masculino , MicrocefaliaRESUMEN
BACKGROUND: Plasmodium vivax parasites are the predominant cause of malaria infections in the Brazilian Amazon. Infected individuals are treated with primaquine, which can induce haemolytic anaemia in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals and may lead to severe and fatal complications. This X-linked disorder is distributed globally and is caused by allelic variants with a geographical distribution that closely reflects populations exposed historically to endemic malaria. In Brazil, few studies have reported the frequency of G6PD deficiency (G6PDd) present in malaria-endemic areas. This is particularly important, as G6PDd screening is not currently performed before primaquine treatment. The aim of this study was to determine the prevalence of G6PDd in the region of Alto do Juruá, in the Western Brazilian Amazon, an area characterized by a high prevalence of P. vivax infection. METHODS: Five-hundred and sixteen male volunteers were screened for G6PDd using the fluorescence spot test (Beutler test) and CareStart™ G6PD Biosensor system. Demographic and clinical-epidemiological data were acquired through an individual interview. To assess the genetic basis of G6PDd, 24 SNPs were genotyped using the Kompetitive Allele Specific PCR assay. RESULTS: Twenty-three (4.5%) individuals were G6PDd. No association was found between G6PDd and the number of malaria cases. An increased risk of reported haemolysis symptoms and blood transfusions was evident among the G6PDd individuals. Twenty-two individuals had the G6PDd A(-) variant and one the G6PD A(+) variant. The Mediterranean variant was not present. Apart from one polymorphism, almost all SNPs were monomorphic or with low frequencies (0-0.04%). No differences were detected among ethnic groups. CONCLUSIONS: The data indicates that ~1/23 males from the Alto do Juruá could be G6PD deficient and at risk of haemolytic anaemia if treated with primaquine. G6PD A(-) is the most frequent deficiency allele in this population. These results concur with reported G6PDd in other regions in Brazil. Routine G6PDd screening to personalize primaquine administration should be considered, particularly as complete treatment of patients with vivax malaria using chloroquine and primaquine, is crucial for malaria elimination.
Asunto(s)
Deficiencia de Glucosafosfato Deshidrogenasa/genética , Malaria Vivax/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Anemia Hemolítica/inducido químicamente , Antimaláricos/efectos adversos , Antimaláricos/uso terapéutico , Brasil/epidemiología , Estudios Transversales , Enfermedades Endémicas , Genotipo , Deficiencia de Glucosafosfato Deshidrogenasa/epidemiología , Humanos , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/epidemiología , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Prevalencia , Primaquina/efectos adversos , Primaquina/uso terapéutico , Adulto JovenRESUMEN
Malaria in pregnancy remains a substantial public health problem in malaria-endemic areas with detrimental outcomes for both the mother and the foetus. The placental changes that lead to some of these detrimental outcomes have been studied, but the mechanisms that lead to these changes are still not fully elucidated. There is some indication that imbalances in cytokine cascades, complement activation and angiogenic dysregulation might be involved in the placental changes observed. Nevertheless, the majority of studies on malaria in pregnancy (MiP) have come from areas where malaria transmission is high and usually restricted to Plasmodium falciparum, the most pathogenic of the malaria parasite species. We conducted a cross-sectional study in Cruzeiro do Sul, Acre state, Brazil, an area of low transmission and where both P. vivax and P. falciparum circulate. We collected peripheral and placental blood and placental biopsies, at delivery from 137 primigravid women and measured levels of the angiogenic factors angiopoietin (Ang)-1, Ang-2, their receptor Tie-2, and several cytokines and chemokines. We measured 4 placental parameters (placental weight, syncytial knots, placental barrier thickness and mononuclear cells) and associated these with the levels of angiogenic factors and cytokines. In this study, MiP was not associated with severe outcomes. An increased ratio of peripheral Tie-2:Ang-1 was associated with the occurrence of MiP. Both Ang-1 and Ang-2 had similar magnitudes but inverse associations with placental barrier thickness. Malaria in pregnancy is an effect modifier of the association between Ang-1 and placental barrier thickness.
Asunto(s)
Malaria/epidemiología , Malaria/fisiopatología , Neovascularización Fisiológica/fisiología , Placenta/irrigación sanguínea , Angiotensina I/metabolismo , Angiotensina II/metabolismo , Brasil/epidemiología , Estudios Transversales , Citocinas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Monitoreo Epidemiológico , Femenino , Humanos , Placenta/anatomía & histología , Embarazo , Prevalencia , Receptor TIE-2/metabolismo , Estadísticas no ParamétricasRESUMEN
Histological evidence of Plasmodium in the placenta is indicative of placental malaria, a condition associated with severe outcomes for mother and child. Histological lesions found in placentas from Plasmodium-exposed women include syncytial knotting, syncytial rupture, thickening of the placental barrier, necrosis of villous tissue and intervillositis. These histological changes have been associated with P. falciparum infections, but little is known about the contribution of P. vivax to such changes. We conducted a cross-sectional study with pregnant women at delivery and assigned them to three groups according to their Plasmodium exposure during pregnancy: no Plasmodium exposure (nâ=â41), P. vivax exposure (nâ=â59) or P. falciparum exposure (nâ=â19). We evaluated their placentas for signs of Plasmodium and placental lesions using ten histological parameters: syncytial knotting, syncytial rupture, placental barrier thickness, villi necrosis, intervillous space area, intervillous leucocytes, intervillous mononucleates, intervillous polymorphonucleates, parasitized erythrocytes and hemozoin. Placentas from P. vivax-exposed women showed little evidence of Plasmodium or hemozoin but still exhibited more lesions than placentas from women not exposed to Plasmodium, especially when infections occurred twice or more during pregnancy. In the Brazilian state of Acre, where diagnosis and primary treatment are readily available and placental lesions occur in the absence of detected placental parasites, relying on the presence of Plasmodium in the placenta to evaluate Plasmodium-induced placental pathology is not feasible. Multivariate logistic analysis revealed that syncytial knotting (odds ratio [OR], 4.21, Pâ=â0.045), placental barrier thickness (OR, 25.59, Pâ=â0.021) and mononuclear cells (OR, 4.02, Pâ=â0.046) were increased in placentas from P. vivax-exposed women when compared to women not exposed to Plasmodium during pregnancy. A vivax-score was developed using these three parameters (and not evidence of Plasmodium) that differentiates between placentas from P. vivax-exposed and unexposed women. This score illustrates the importance of adequate management of P. vivax malaria during pregnancy.