Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Immunol ; 157: 91-100, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37002957

RESUMEN

Breast cancer is one of the leading causes of death that affects the female population worldwide. Despite advances in treatments and a greater understanding of the disease, there are still difficulties in successfully treating patients. Currently, the main challenge in the field of cancer vaccines is antigenic variability which can reduce antigen-specific T- cell response efficacy. The search for and validation of immunogenic antigen targets increased dramatically over the past few decades and, with the advent of modern sequencing techniques, permitting the fast and accurate identification of the neoantigen landscape of tumor cells, will undoubtedly continue to grow exponentially for years to come. We have previously implemented Variable Epitope Libraries (VEL) as an unconventional vaccine strategy in preclinical models and for identifying and selecting mutant epitope variants. Here, we used an alanine-based sequence to generate a 9-mer VEL-like combinatorial mimotope library G3d as a new class of vaccine immunogen. An in silico analysis of the 16,000 G3d-derived sequences revealed potential MHC-I binders and immunogenic mimotopes. We demonstrated the antitumor effect of treatment with G3d in the 4T1 murine model of breast cancer. Moreover, two different T cell proliferation screening assays against a panel of randomly selected G3d-derived mimotopes allowed the isolation of both stimulatory and inhibitory mimotopes showing differential therapeutic vaccine efficacy. Thus, the mimotope library is a promising vaccine immunogen and a reliable source for isolating molecular cancer vaccine components.


Asunto(s)
Neoplasias , Biblioteca de Péptidos , Femenino , Animales , Ratones , Epítopos , Modelos Animales de Enfermedad , Antígenos de Neoplasias
2.
Mol Immunol ; 139: 65-75, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34454186

RESUMEN

After decades of cancer vaccine efforts, there is an imperious necessity for novel ideas that may result in better tumor control in patients. We have proposed the use of a novel Variable Epitope Library (VEL) vaccine strategy, which incorporates an unprecedented number of mutated epitopes to target antigenic variability and break tolerance against tumor-associated antigens. Here, we used an oncofetal antigen/immature laminin receptor protein-derived sequence to generate 9-mer and 43-mer VEL immunogens. 4T1 tumor-bearing mice developed epitope-specific CD8+IFN-γ+ and CD4+IFN-γ+ T cell responses after treatment. Tumor and lung analysis demonstrated that VELs could increase the number of tumor-infiltrating lymphocytes with diverse effector functions while reducing the number of immunosuppressive myeloid-derived suppressor and regulatory T cells. Most importantly, VEL immunogens inhibited tumor growth and metastasis after a single dose. The results presented here are consistent with our previous studies and provide evidence for VEL immunogens' feasibility as promising cancer immunotherapy.


Asunto(s)
Antígenos de Neoplasias/inmunología , Neoplasias de la Mama , Vacunas contra el Cáncer/inmunología , Epítopos de Linfocito T/inmunología , Receptores de Laminina/inmunología , Animales , Vacunas contra el Cáncer/farmacología , Modelos Animales de Enfermedad , Mapeo Epitopo/métodos , Femenino , Ratones , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA