Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Physiol Plant ; 176(4): e14430, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38981734

RESUMEN

Miscanthus is a perennial grass suitable for the production of lignocellulosic biomass on marginal lands. The effects of salt stress on Miscanthus cell wall composition and its consequences on biomass quality have nonetheless received relatively little attention. In this study, we investigated how exposure to moderate (100 mM NaCl) or severe (200 mM NaCl) saline growing conditions altered the composition of both primary and secondary cell wall components in the stems of 15 Miscanthus sinensis genotypes. The exposure to stress drastically impacted biomass yield and cell wall composition in terms of content and structural features. In general, the observed compositional changes were more pronounced under severe stress conditions and were more apparent in genotypes with a higher sensitivity towards stress. Besides a severely reduced cellulose content, salt stress led to increased pectin content, presumably in the form of highly branched rhamnogalacturonan type I. Although salt stress had a limited effect on the total lignin content, the acid-soluble lignin content was strongly increased in the most sensitive genotypes. This effect was also reflected in substantially altered lignin structures and led to a markedly reduced incorporation of syringyl subunits and p-coumaric acid moieties. Interestingly, plants that were allowed a recovery period after stress ultimately had a reduced lignin content compared to those continuously grown under control conditions. In addition, the salt stress-induced cell wall alterations contributed to an improved enzymatic saccharification efficiency.


Asunto(s)
Pared Celular , Lignina , Tallos de la Planta , Poaceae , Estrés Salino , Pared Celular/química , Pared Celular/metabolismo , Lignina/metabolismo , Poaceae/efectos de los fármacos , Poaceae/fisiología , Poaceae/genética , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/química , Tallos de la Planta/metabolismo , Pectinas/metabolismo , Celulosa/metabolismo , Genotipo , Biomasa , Cloruro de Sodio/farmacología
2.
Plants (Basel) ; 12(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36840127

RESUMEN

Syntenic cell wall QTLs (SQTLs) can identify genetic determinants of biomass traits in understudied species based on results from model crops. However, their effective use in plant breeding requires SQTLs to display intraspecific allelic variability and to predict causative loci in other populations/species than the ones used for SQTLs identification. In this study, genome assemblies from different accessions of Arabidopsis, rapeseed, tomato, rice, Brachypodium and maize were used to evaluate the intraspecific variability of SQTLs. In parallel, a genome-wide association study (GWAS) on cell wall quality traits was performed in miscanthus to verify the colocalization between GWAS loci and miscanthus SQTLs. Finally, an analogous approach was applied on a set of switchgrass cell wall QTLs retrieved from the literature. These analyses revealed large SQTLs intraspecific genetic variability, ranging from presence-absence gene variation to SNPs/INDELs and changes in coded proteins. Cell wall genes displaying gene dosage regulation, such as PAL and CAD, displayed presence-absence variation in Brachypodium and rapeseed, while protein INDELs were detected for the Brachypodium homologs of the rice brittle culm-like 8 locus, which may likely impact cell wall quality. Furthermore, SQTLs significantly colocalized with the miscanthus and switchgrass QTLs, with relevant cell wall genes being retained in colocalizing regions. Overall, SQTLs are useful tools to screen germplasm for relevant genes and alleles to improve biomass quality and can increase the efficiency of plant breeding in understudied biomass crops.

3.
Molecules ; 26(2)2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33419100

RESUMEN

Lignocellulosic crops are attractive bioresources for energy and chemicals production within a sustainable, carbon circular society. Miscanthus is one of the perennial grasses that exhibits great potential as a dedicated feedstock for conversion to biobased products in integrated biorefineries. The current biorefinery strategies are primarily focused on polysaccharide valorization and require severe pretreatments to overcome the lignin barrier. The need for such pretreatments represents an economic burden and impacts the overall sustainability of the biorefinery. Hence, increasing its efficiency has been a topic of great interest. Inversely, though pretreatment will remain an essential step, there is room to reduce its severity by optimizing the biomass composition rendering it more exploitable. Extensive studies have examined the miscanthus cell wall structures in great detail, and pinpointed those components that affect biomass digestibility under various pretreatments. Although lignin content has been identified as the most important factor limiting cell wall deconstruction, the effect of polysaccharides and interaction between the different constituents play an important role as well. The natural variation that is available within different miscanthus species and increased understanding of biosynthetic cell wall pathways have specified the potential to create novel accessions with improved digestibility through breeding or genetic modification. This review discusses the contribution of the main cell wall components on biomass degradation in relation to hydrothermal, dilute acid and alkaline pretreatments. Furthermore, traits worth advancing through breeding will be discussed in light of past, present and future breeding efforts.


Asunto(s)
Alimentación Animal , Biomasa , Pared Celular , Lignina/química , Fitomejoramiento , Poaceae , Pared Celular/química , Pared Celular/genética , Poaceae/química , Poaceae/genética , Poaceae/crecimiento & desarrollo
4.
Glob Change Biol Bioenergy ; 11(1): 118-151, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30854028

RESUMEN

Genetic improvement through breeding is one of the key approaches to increasing biomass supply. This paper documents the breeding progress to date for four perennial biomass crops (PBCs) that have high output-input energy ratios: namely Panicum virgatum (switchgrass), species of the genera Miscanthus (miscanthus), Salix (willow) and Populus (poplar). For each crop, we report on the size of germplasm collections, the efforts to date to phenotype and genotype, the diversity available for breeding and on the scale of breeding work as indicated by number of attempted crosses. We also report on the development of faster and more precise breeding using molecular breeding techniques. Poplar is the model tree for genetic studies and is furthest ahead in terms of biological knowledge and genetic resources. Linkage maps, transgenesis and genome editing methods are now being used in commercially focused poplar breeding. These are in development in switchgrass, miscanthus and willow generating large genetic and phenotypic data sets requiring concomitant efforts in informatics to create summaries that can be accessed and used by practical breeders. Cultivars of switchgrass and miscanthus can be seed-based synthetic populations, semihybrids or clones. Willow and poplar cultivars are commercially deployed as clones. At local and regional level, the most advanced cultivars in each crop are at technology readiness levels which could be scaled to planting rates of thousands of hectares per year in about 5 years with existing commercial developers. Investment in further development of better cultivars is subject to current market failure and the long breeding cycles. We conclude that sustained public investment in breeding plays a key role in delivering future mass-scale deployment of PBCs.

5.
Front Plant Sci ; 8: 563, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28469627

RESUMEN

Miscanthus is a genus of perennial rhizomatous grasses with C4 photosynthesis which is indigenous in a wide geographic range of Asian climates. The sterile clone, Miscanthus × giganteus (M. × giganteus), is a naturally occurring interspecific hybrid that has been used commercially in Europe for biomass production for over a decade. Although, M. × giganteus has many outstanding performance characteristics including high yields and low nutrient offtakes, commercial expansion is limited by cloning rates, slow establishment to a mature yield, frost, and drought resistance. In this paper, we evaluate the performance of 13 novel germplasm types alongside M. × giganteus and horticultural "Goliath" in trials in six sites (in Germany, Russia, The Netherlands, Turkey, UK, and Ukraine). Mean annual yields across all the sites and genotypes increased from 2.3 ± 0.2 t dry matter ha-1 following the first year of growth, to 7.3 ± 0.3, 9.5 ± 0.3, and 10.5 ± 0.2 t dry matter ha-1 following the second, third, and fourth years, respectively. The highest average annual yields across locations and four growth seasons were observed for M. × giganteus (9.9 ± 0.7 t dry matter ha-1) and interspecies hybrid OPM-6 (9.4 ± 0.6 t dry matter ha-1). The best of the new hybrid genotypes yielded similarly to M. × giganteus at most of the locations. Significant effects of the year of growth, location, species, genotype, and interplay between these factors have been observed demonstrating strong genotype × environment interactions. The highest yields were recorded in Ukraine. Time needed for the crop establishment varied depending on climate: in colder climates such as Russia the crop has not achieved its peak yield by the fourth year, whereas in the hot climate of Turkey and under irrigation the yields were already high in the first growing season. We have identified several alternatives to M. × giganteus which have provided stable yields across wide climatic ranges, mostly interspecies hybrids, and also Miscanthus genotypes providing high biomass yields at specific geographic locations. Seed-propagated interspecific and intraspecific hybrids, with high stable yields and cheaper reliable scalable establishment remain a key strategic objective for breeders.

6.
BMC Genomics ; 18(1): 406, 2017 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-28545405

RESUMEN

BACKGROUND: Miscanthus sinensis is a high yielding perennial grass species with great potential as a bioenergy feedstock. One of the challenges that currently impedes commercial cellulosic biofuel production is the technical difficulty to efficiently convert lignocellulosic biomass into biofuel. The development of feedstocks with better biomass quality will improve conversion efficiency and the sustainability of the value-chain. Progress in the genetic improvement of biomass quality may be substantially expedited by the development of genetic markers associated to quality traits, which can be used in a marker-assisted selection program. RESULTS: To this end, a mapping population was developed by crossing two parents of contrasting cell wall composition. The performance of 182 F1 offspring individuals along with the parents was evaluated in a field trial with a randomized block design with three replicates. Plants were phenotyped for cell wall composition and conversion efficiency characters in the second and third growth season after establishment. A new SNP-based genetic map for M. sinensis was built using a genotyping-by-sequencing (GBS) approach, which resulted in 464 short-sequence uniparental markers that formed 16 linkage groups in the male map and 17 linkage groups in the female map. A total of 86 QTLs for a variety of biomass quality characteristics were identified, 20 of which were detected in both growth seasons. Twenty QTLs were directly associated to different conversion efficiency characters. Marker sequences were aligned to the sorghum reference genome to facilitate cross-species comparisons. Analyses revealed that for some traits previously identified QTLs in sorghum occurred in homologous regions on the same chromosome. CONCLUSION: In this work we report for the first time the genetic mapping of cell wall composition and bioconversion traits in the bioenergy crop miscanthus. These results are a first step towards the development of marker-assisted selection programs in miscanthus to improve biomass quality and facilitate its use as feedstock for biofuel production.


Asunto(s)
Biocombustibles , Biomasa , Pared Celular/metabolismo , Poaceae/citología , Poaceae/metabolismo , Combinación de Medicamentos , Ligamiento Genético , Variación Genética , Genotipo , Lignina/metabolismo , Poaceae/genética , Pirantel/análogos & derivados , Sitios de Carácter Cuantitativo/genética , Especificidad de la Especie , Sintenía
7.
Front Plant Sci ; 7: 1620, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27917177

RESUMEN

This paper describes the complete findings of the EU-funded research project OPTIMISC, which investigated methods to optimize the production and use of miscanthus biomass. Miscanthus bioenergy and bioproduct chains were investigated by trialing 15 diverse germplasm types in a range of climatic and soil environments across central Europe, Ukraine, Russia, and China. The abiotic stress tolerances of a wider panel of 100 germplasm types to drought, salinity, and low temperatures were measured in the laboratory and a field trial in Belgium. A small selection of germplasm types was evaluated for performance in grasslands on marginal sites in Germany and the UK. The growth traits underlying biomass yield and quality were measured to improve regional estimates of feedstock availability. Several potential high-value bioproducts were identified. The combined results provide recommendations to policymakers, growers and industry. The major technical advances in miscanthus production achieved by OPTIMISC include: (1) demonstration that novel hybrids can out-yield the standard commercially grown genotype Miscanthus x giganteus; (2) characterization of the interactions of physiological growth responses with environmental variation within and between sites; (3) quantification of biomass-quality-relevant traits; (4) abiotic stress tolerances of miscanthus genotypes; (5) selections suitable for production on marginal land; (6) field establishment methods for seeds using plugs; (7) evaluation of harvesting methods; and (8) quantification of energy used in densification (pellet) technologies with a range of hybrids with differences in stem wall properties. End-user needs were addressed by demonstrating the potential of optimizing miscanthus biomass composition for the production of ethanol and biogas as well as for combustion. The costs and life-cycle assessment of seven miscanthus-based value chains, including small- and large-scale heat and power, ethanol, biogas, and insulation material production, revealed GHG-emission- and fossil-energy-saving potentials of up to 30.6 t CO2eq C ha-1y-1 and 429 GJ ha-1y-1, respectively. Transport distance was identified as an important cost factor. Negative carbon mitigation costs of -78€ t-1 CO2eq C were recorded for local biomass use. The OPTIMISC results demonstrate the potential of miscanthus as a crop for marginal sites and provide information and technologies for the commercial implementation of miscanthus-based value chains.

8.
Biotechnol Biofuels ; 9: 63, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26981155

RESUMEN

BACKGROUND: Despite the recognition that feedstock composition influences biomass conversion efficiency, limited information exists as to how bioenergy crops with reduced recalcitrance can improve the economics and sustainability of cellulosic fuel conversion platforms. We have compared the bioenergy potential-estimated as total glucose productivity per hectare (TGP)-of maize cultivars contrasting for cell wall digestibility across processing conditions of increasing thermochemical severity. In addition, exploratory environmental impact and economic modeling were used to assess whether the development of bioenergy feedstocks with improved cell wall digestibility can enhance the environmental performance and reduce the costs of biomass pretreatment and enzymatic conversion. RESULTS: Systematic genetic gains in cell wall degradability can lead to significant advances in the productivity (TGP) of cellulosic fuel biorefineries under low severity processing; only if gains in digestibility are not accompanied by substantial yield penalties. For a hypothetical maize genotype combining the best characteristics available in the evaluated cultivar panel, TGP under mild processing conditions (~3.7 t ha(-1)) matched the highest realizable yields possible at the highest processing severity. Under this scenario, both, the environmental impacts and processing costs for the pretreatment and enzymatic saccharification of maize stover were reduced by 15 %, given lower chemical and heat consumption. CONCLUSIONS: Genetic improvements in cell wall composition leading to superior cell wall digestibility can be advantageous for cellulosic fuel production, especially if "less severe" processing regimes are favored for further development. Exploratory results indicate potential cost and environmental impact reductions for the pretreatment and enzymatic saccharification of maize feedstocks exhibiting higher cell wall degradability. Conceptually, these results demonstrate that the advance of bioenergy cultivars with improved biomass degradability can enhance the performance of currently available biomass-to-ethanol conversion systems.

9.
Mol Breed ; 36: 9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26798323

RESUMEN

Many important crops have received little attention by the scientific community, either because they are not considered economically important or due to their large and complex genomes. De novo transcriptome assembly, using next-generation sequencing data, is an attractive option for the study of these orphan crops. In spite of the large amount of sequencing data that can be generated, there is currently a lack of tools which can effectively help molecular breeders and biologists to mine this type of information. Our goal was to develop a tool that enables molecular breeders, without extensive bioinformatics knowledge, to efficiently study de novo transcriptome data from any orphan crop (http://www.bioinformatics.nl/denovobrowser/db/species/index). The Orphan Crops Browser has been designed to facilitate the following tasks (1) search and identification of candidate transcripts based on phylogenetic relationships between orthologous sequence data from a set of related species and (2) design specific and degenerate primers for expression studies in the orphan crop of interest. To demonstrate the usability and reliability of the browser, it was used to identify the putative orthologues of 17 known lignin biosynthetic genes from maize and sugarcane in the orphan crop Miscanthus sinensis. Expression studies in miscanthus stem internode tissue differing in maturation were subsequently carried out, to follow the expression of these genes during lignification. Our results showed a negative correlation between lignin content and gene expression. The present data are in agreement with recent findings in maize and other crops, and it is further discussed in this paper.

10.
Front Plant Sci ; 7: 2004, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28111583

RESUMEN

To investigate the potential effects of differences between growth locations on the cell wall composition and saccharification efficiency of the bioenergy crop miscanthus, a diverse set of 15 accessions were evaluated in six locations across Europe for the first 3 years following establishment. High-throughput quantification of cellulose, hemicellulose and lignin contents, as well as cellulose and hemicellulose conversion rates was achieved by combining near-infrared reflectance spectroscopy (NIRS) and biochemical analysis. Prediction models were developed and found to predict biomass quality characteristics with high accuracy. Location significantly affected biomass quality characteristics in all three cultivation years, but location-based differences decreased toward the third year as the plants reached maturity and the effect of location-dependent differences in the rate of establishment reduced. In all locations extensive variation in accession performance was observed for quality traits. The performance of the different accessions in the second and third cultivation year was strongly correlated, while accession performance in the first cultivation year did not correlate well with performance in later years. Significant genotype-by-environment (G × E) interactions were observed for most traits, revealing differences between accessions in environmental sensitivity. Stability analysis of accession performance for calculated ethanol yields suggested that selection for good and stable performance is a viable approach. Environmental influence on biomass quality is substantial and should be taken into account in order to match genotype, location and end-use of miscanthus as a lignocellulose feedstock.

11.
BMC Genet ; 15: 146, 2014 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-25526782

RESUMEN

BACKGROUND: Global trade has ensured that the ornamental horticulture continues to grow worldwide, with rose hybrids being the most economically important genus (Rosa x hybrida). Due to changes in global trade and an increase in energy costs the ornamental industry has seen a shift in the production and sale of flowers from the US and Europe alone to production in Africa and Latin America. As Kenya is a major exporter of roses to Europe we studied the genetic variation and heritability of specific morphological traits in a tetraploid population grown in the Netherlands and in Kenya. The aim was to estimate genotype by environment interaction (G × E) and to investigate the implications of (G × E) for rose breeding. RESULTS: A tetraploid rose population (K5) from a cross between two tetraploid parents was field tested over two seasons in the Netherlands (summer and winter) and two locations in Kenya (Nairobi and Njoro). Ten traits were compared per genotype across the four environments. There were differences in trait association across the four environments showing that the traits were partially influenced by the environment. The traits that had a low ratio of σ(2) ge/σ(2) g also showed a high value for heritability. For the traits number of petals, prickles on petioles, prickles on stems the interaction is minimal. For the traits chlorophyll content, stem width and side shoots we observed a much higher interaction ratio of 0.83, 1.43 and 3.13 respectively. The trait number of petals had the highest heritability of 0.96 and the lowest σ(2) ge/σ(2) g ratio (0.08). The trait number of side shoots (SS) with the lowest heritability (0.40) also had the highest σ(2) ge/σ(2) g ratio of 3.13. CONCLUSION: Attained by this experiment showed that we have different magnitudes of non-crossover G × E interactions. For the traits number of petals, prickles on stems and prickles on petioles with a low interaction and high heritability, selection can be done at any of the environments. Thus, these traits can be confirmed at the breeding site. For the traits stem width, side shoots and chlorophyll content that had a higher interaction selection for or against these traits should be done at the production location or at least be verified there.


Asunto(s)
Flores/genética , Tallos de la Planta/genética , Rosa/genética , Flores/anatomía & histología , Flores/crecimiento & desarrollo , Interacción Gen-Ambiente , Genes de Plantas , Estudios de Asociación Genética , Genotipo , Tallos de la Planta/anatomía & histología , Tallos de la Planta/crecimiento & desarrollo , Rosa/anatomía & histología , Rosa/crecimiento & desarrollo , Tetraploidía
12.
PLoS One ; 8(10): e76826, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24116171

RESUMEN

Advanced button mushroom cultivars that are less sensitive to mechanical bruising are required by the mushroom industry, where automated harvesting still cannot be used for the fresh mushroom market. The genetic variation in bruising sensitivity (BS) of Agaricus bisporus was studied through an incomplete set of diallel crosses to get insight in the heritability of BS and the combining ability of the parental lines used and, in this way, to estimate their breeding value. To this end nineteen homokaryotic lines recovered from wild strains and cultivars were inter-crossed in a diallel scheme. Fifty-one successful hybrids were grown under controlled conditions, and the BS of these hybrids was assessed. BS was shown to be a trait with a very high heritability. The results also showed that brown hybrids were generally less sensitive to bruising than white hybrids. The diallel scheme allowed to estimate the general combining ability (GCA) for each homokaryotic parental line and to estimate the specific combining ability (SCA) of each hybrid. The line with the lowest GCA is seen as the most attractive donor for improving resistance to bruising. The line gave rise to hybrids sensitive to bruising having the highest GCA value. The highest negative SCA possibly indicates heterosis effects for resistance to bruising. This study provides a foundation for estimating breeding value of parental lines to further study the genetic factors underlying bruising sensitivity and other quality-related traits, and to select potential parental lines for further heterosis breeding. The approach of studying combining ability in a diallel scheme was used for the first time in button mushroom breeding.


Asunto(s)
Agaricus/genética , Variación Genética , Patrón de Herencia/genética , Agaricus/clasificación , Algoritmos , Cruzamientos Genéticos , Vigor Híbrido , Hibridación Genética , Modelos Genéticos , Especificidad de la Especie , Estrés Mecánico
13.
Theor Appl Genet ; 126(9): 2335-51, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23771136

RESUMEN

A spring barley collection of 192 genotypes from a wide geographical range was used to identify quantitative trait loci (QTLs) for salt tolerance traits by means of an association mapping approach using a thousand SNP marker set. Linkage disequilibrium (LD) decay was found with marker distances spanning 2-8 cM depending on the methods used to account for population structure and genetic relatedness between genotypes. The association panel showed large variation for traits that were highly heritable under salt stress, including biomass production, chlorophyll content, plant height, tiller number, leaf senescence and shoot Na(+), shoot Cl(-) and shoot, root Na(+)/K(+) contents. The significant correlations between these traits and salt tolerance (defined as the biomass produced under salt stress relative to the biomass produced under control conditions) indicate that these traits contribute to (components of) salt tolerance. Association mapping was performed using several methods to account for population structure and minimize false-positive associations. This resulted in the identification of a number of genomic regions that strongly influenced salt tolerance and ion homeostasis, with a major QTL controlling salt tolerance on chromosome 6H, and a strong QTL for ion contents on chromosome 4H.


Asunto(s)
Genes de Plantas , Hordeum/genética , Tolerancia a la Sal , Clorofila/análisis , Mapeo Cromosómico , Variación Genética , Genómica , Hordeum/química , Desequilibrio de Ligamiento , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
14.
Front Plant Sci ; 4: 107, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23653628

RESUMEN

With the advent of biorefinery technologies enabling plant biomass to be processed into biofuel, many researchers set out to study and improve candidate biomass crops. Many of these candidates are C4 grasses, characterized by a high productivity and resource use efficiency. In this review the potential of five C4 grasses as lignocellulosic feedstock for biofuel production is discussed. These include three important field crops-maize, sugarcane and sorghum-and two undomesticated perennial energy grasses-miscanthus and switchgrass. Although all these grasses are high yielding, they produce different products. While miscanthus and switchgrass are exploited exclusively for lignocellulosic biomass, maize, sorghum, and sugarcane are dual-purpose crops. It is unlikely that all the prerequisites for the sustainable and economic production of biomass for a global cellulosic biofuel industry will be fulfilled by a single crop. High and stable yields of lignocellulose are required in diverse environments worldwide, to sustain a year-round production of biofuel. A high resource use efficiency is indispensable to allow cultivation with minimal inputs of nutrients and water and the exploitation of marginal soils for biomass production. Finally, the lignocellulose composition of the feedstock should be optimized to allow its efficient conversion into biofuel and other by-products. Breeding for these objectives should encompass diverse crops, to meet the demands of local biorefineries and provide adaptability to different environments. Collectively, these C4 grasses are likely to play a central role in the supply of lignocellulose for the cellulosic ethanol industry. Moreover, as these species are evolutionary closely related, advances in each of these crops will expedite improvements in the other crops. This review aims to provide an overview of their potential, prospects and research needs as lignocellulose feedstocks for the commercial production of biofuel.

15.
BMC Plant Biol ; 10: 177, 2010 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-20712870

RESUMEN

BACKGROUND: Genetic markers and linkage mapping are basic prerequisites for marker-assisted selection and map-based cloning. In the case of the key grassland species Lolium spp., numerous mapping populations have been developed and characterised for various traits. Although some genetic linkage maps of these populations have been aligned with each other using publicly available DNA markers, the number of common markers among genetic maps is still low, limiting the ability to compare candidate gene and QTL locations across germplasm. RESULTS: A set of 204 expressed sequence tag (EST)-derived simple sequence repeat (SSR) markers has been assigned to map positions using eight different ryegrass mapping populations. Marker properties of a subset of 64 EST-SSRs were assessed in six to eight individuals of each mapping population and revealed 83% of the markers to be polymorphic in at least one population and an average number of alleles of 4.88. EST-SSR markers polymorphic in multiple populations served as anchor markers and allowed the construction of the first comprehensive consensus map for ryegrass. The integrated map was complemented with 97 SSRs from previously published linkage maps and finally contained 284 EST-derived and genomic SSR markers. The total map length was 742 centiMorgan (cM), ranging for individual chromosomes from 70 cM of linkage group (LG) 6 to 171 cM of LG 2. CONCLUSIONS: The consensus linkage map for ryegrass based on eight mapping populations and constructed using a large set of publicly available Lolium EST-SSRs mapped for the first time together with previously mapped SSR markers will allow for consolidating existing mapping and QTL information in ryegrass. Map and markers presented here will prove to be an asset in the development for both molecular breeding of ryegrass as well as comparative genetics and genomics within grass species.


Asunto(s)
Mapeo Cromosómico , Etiquetas de Secuencia Expresada , Lolium/genética , Repeticiones de Microsatélite , ADN de Plantas/genética , Ligamiento Genético , Marcadores Genéticos , Genoma de Planta , Genotipo , Polimorfismo Genético , Sitios de Carácter Cuantitativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA