Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(27): 18584-18591, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38932640

RESUMEN

A simple aqueous complexing system of UO22+ with F- is selected to systematically illustrate the application of Raman spectroscopy in exploring uranyl(VI) chemistry. Five successive complexes, UO2F+, UO2F2(aq), UO2F3-, UO2F42-, and UO2F53-, are identified, as well as the formation constants except for the 1 : 5 species UO2F53-, which was experimentally observed here for the first time. The standard relative molar Raman scattering intensity for each species is obtained by deconvolution of the spectra collected during titrations. The results of relativistic quantum chemical first-principles and ab initio calculations are presented for the complete set of [UO2(H2O)mFn]2-n complexes (n = 0-5), both for the gas phase as well as for aqueous solution modelling bulk water using the conductor-like screening model. Electronic structure calculations at the Møller-Plesset second-order perturbation theory level provide accurate geometrical parameters and in particular reveal that k water molecules in the second coordination sphere coordinating to the F- ligands in the resulting [UO2(H2O)mFn]2-n(H2O)k complexes need to be treated explicitly in order to obtain vibrational frequencies in very good agreement with experimental data. The thermodynamics and structural information obtained in this work and the developed methodology could be instructive for the future experimental and computational research on the complexation of the uranyl ion.

2.
J Chem Theory Comput ; 20(8): 3154-3168, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38588492

RESUMEN

A novel incremental scheme is presented including an incremental expansion of the virtual space for the calculation of electron correlation energies, which is compatible with any size-extensive correlation method and scales asymptotically linear for large molecules. The performance is studied for organic molecules, water clusters, and a La(III)-water complex, where the compatibility with pseudopotentials is also examined. The computational requirements are already reduced tremendously for medium-sized water clusters and hydrocarbons with respect to the canonical CCSD as well as the ordinary incremental scheme references. Correlation energies within chemical accuracy have been observed for all studied systems. The novelty of the method is that relatively small virtual spaces are used in combination with tuples of localized occupied spaces. The corresponding orthonormal occupied and virtual orbitals are obtained from QM/QM embedding calculations and can thus be used with standard quantum chemistry codes for correlation calculations. It is presented how relevant virtual spaces are selected and the correlation energies are linked in the new virtual space expansion.

3.
J Comput Chem ; 41(15): 1427-1435, 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32125003

RESUMEN

A relativistic density functional theory (DFT) study is reported which aims to understand the complexation chemistry of An4+ ions (An = Th, U, Np, and Pu) with a potential decorporation agent, 5-LIO(Me-3,2-HOPO). The calculations show that the periodic change of the metal binding free energy has an excellent correlation with the ionic radii and such change of ionic radii also leads to the structural modulation of actinide-ligand complexes. The calculated structural and binding parameters agree well with the available experimental data. Atomic charges derived from quantum theory of atoms in molecules (QTAIM) and natural bond order (NBO) analysis shows the major role of ligand-to-metal charge transfer in the stability of the complexes. Energy decomposition analysis, QTAIM, and electron localization function (ELF) predict that the actinide-ligand bond is dominantly ionic, but the contribution of orbital interaction is considerable and increases from Th4+ to Pu4+ . A decomposition of orbital contributions applying the extended transition state-natural orbital chemical valence method points out the significant π-donation from the oxygen donor centers to the electron-poor actinide ion. Molecular orbital analysis suggests an increasing trend of orbital mixing in the context of 5f orbital participation across the tetravalent An series (Th-Pu). However, the corresponding overlap integral is found to be smaller than in the case of 6d orbital participation. An analysis of the results from the aforementioned electronic structure methods indicates that such orbital participation possibly arises due to the energy matching of ligand and metal orbitals and carries the signature of near-degeneracy driven covalency.

4.
J Comput Chem ; 41(4): 305-316, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31713255

RESUMEN

Density functional theory has been used to study the biologically important coenzyme NADPH and its oxidized form NADP+ . It was found that free NADPH prefers a compact structure in gas phase and exists in more extended geometries in aqueous solution. Ultraviolet-visible absorption spectra in aqueous solution were calculated for NADPH with an explicit treatment of 100 surrounding water molecules in combination with the COSMO solvation model for bulk hydration effects. The obtained spectra using the B3LYP hybrid density functional agree quite well with experimental data. The changes of Gibbs free energies ΔG in reactions of NADPH with O2 observed experimentally in cardiovascular and in chemical systems, that is, NADPH + 2 3 O2 → NADP+ + 2 O2- + H+ and NADPH + 1 O2 + H+ → NADP+ + H2 O2 , respectively, were calculated. The NADPH oxidation reaction in the cardiovascular system cannot proceed without activation since the obtained ΔG is positive. The reaction of NADPH in the chemical system with singlet oxygen was found to proceed in two ways, each consisting of two steps, that is, NADPH firstly reacts with 1 O2 barrierlessly to form NADP+ and HO2- , from which H2 O2 is formed in a spontaneous reaction with H+ , or 1 O2 and H+ initially form 1 HO2+ , which further reacts with NADPH to yield NADP+ and H2 O2 . © 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc.


Asunto(s)
Teoría Funcional de la Densidad , NADP/metabolismo , Estructura Molecular , NADP/química , Oxidación-Reducción , Espectrofotometría Ultravioleta , Estereoisomerismo
5.
Inorg Chem ; 58(15): 9738-9748, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31343876

RESUMEN

Soft donor ligands often provide higher selectivity for actinides(III) over chemically similar lanthanides(III), e.g., in the AmIII-EuIII pair. Frequently, the origin of such selectivity is associated with an increased covalency in actinide-ligand bonding. However, the relationship between the degree of covalency and ion selectivity has yet to reach general consensus. Further, it is unclear whether the enhanced covalency leads to a thermodynamic stabilization of the complex or not. Using relativistic density functional theory, we have addressed these outstanding issues by analyzing the subtle change of metal-ligand interactions from a hard donor ligand to a mixed soft-hard one. The present comparative study on the structure of and binding in Am3+ and Eu3+ complexes with 3,4,3-LI(1,2-HOPO) (L) and its mixed-donor variant (LS) shows that the introduction of sulfur as a soft donor atom into the metal coordination sphere indeed infuses an Am3+ selectivity into the otherwise nonselective ligand L but also leads to a significant reduction of the metal-binding Gibbs free energies. Natural population analysis, charge decomposition analysis, and its extended version point to the critical role of ligand-to-metal charge transfer in the overall thermodynamic stability of the complexes. A detailed energy decomposition analysis combining the extended transition state with the natural orbitals chemical valence method reveals an enhancement of the covalency upon switching to the soft-hard donor ligand because of the different nature of the metal-ligand interaction. The ligand L predominantly binds the metal via π donation, whereas the ligand LS prefers σ donation. Molecular orbital and quantum theory of atoms in molecules analyses as well as a comparison to a simple model system show that the covalency occurs as a result of orbital mixing and is near-degeneracy-driven in nature. This enhanced covalency, however, fails to thermodynamically compensate for the loss of strong electrostatic interaction and thus does not lead to an additional stabilization of the metal-LS complexes.

6.
J Chem Theory Comput ; 14(12): 6197-6210, 2018 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-30365307

RESUMEN

A new approach to implement the restricted closed-shell Hartree-Fock equation is proposed. In the ansatz presented, the explicit transformation of integrals from the primitive to the atomic-orbital basis is omitted. Instead, the density matrix is transformed to the primitive basis, in which it is contracted with the untransformed integrals. Obtained is the two-electron part of the Fock matrix, which is transformed back to the atomic orbital basis. The remaining steps of the self-consistent field algorithm are then performed as usual. The program presented here incorporates the most important standard techniques, such as integral prescreening, convergence acceleration (via the direct inversion of the iterative subspace ansatz), and the differential density scheme. Test calculations on standard Hartree-Fock problems were compared to the commercially available MOLPRO and TURBOMOLE program packages. Except in a few special cases, the performance of the program presented here is superior, in comparison to those two programs. Accelerations by up to a factor of 5 were found, with respect to MOLPRO calculations, and up to 3 for TURBOMOLE (in the latter case, up to 55 for generalized contracted basis sets). The program structure is independent of the type of radial contraction; however, the best results are obtained for generalized radial contraction basis sets of low contraction. The program is written in C++ and utilizes code generation engines to automatically generate the routines for the integration and density contraction. Streaming SIMD extensions are used explicitly.

7.
Angew Chem Int Ed Engl ; 57(36): 11812-11816, 2018 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-29984885

RESUMEN

The uranyl dication shows photocatalytic activity towards C(sp3 )-H bonds of aliphatic compounds, but not towards those of alkylbenzenes or cyclic ketones. Theoretical insights into the corresponding mechanisms are still limited. Multi-configurational ab initio calculations including relativistic effects reveal the inherent electron-transfer mechanism for the uranyl catalyzed C-H fluorination under blue light. Along the reaction path of the triplet state it was found that the hydrogen atom abstraction triggered by the electron-rich oxygen of the uranyl moiety is the rate-limiting step. The subsequent steps, that is, N-F and O-H bond breakage in a manner of concerted asynchronicity, generation of the targeted fluorinated product, and recovery of the photocatalyst are nearly barrierless. Moreover the single electron transfer between the reactive substrates plays a fundamental role during the whole photocatalytic cycle.

8.
Angew Chem Int Ed Engl ; 57(31): 9965-9969, 2018 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-29786934

RESUMEN

The weak photoluminescence of silver nanoclusters prevents their broad application as luminescent nanomaterials. Recent experiments, however, have shown that gold doping can significantly enhance the photoluminescence intensity of Ag29 nanoclusters but the molecular and physical origins of this effect remain unknown. Therefore, we have computationally explored the geometric and electronic structures of Ag29 and gold-doped Ag29-x Aux (x=1-5) nanoclusters in the S0 and S1 states. We found that 1) relativistic effects that are mainly due to the Au atoms play an important role in enhancing the fluorescence intensity, especially for highly doped Ag26 Au3 , Ag25 Au4 , and Ag24 Au5 , and that 2) heteronuclear Au-Ag bonds can increase the stability and regulate the fluorescence intensity of isomers of these gold-doped nanoclusters. These novel findings could help design doped silver nanoclusters with excellent luminescence properties.

9.
Chem Soc Rev ; 46(22): 6697-6709, 2017 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-28913523

RESUMEN

This Tutorial Review provides an overview of the historic and current development of the organometallic chemistry of cerium in its oxidation state 4+. Among the tetravalent lanthanide ions, only Ce4+ forms stable coordination compounds (e.g. (NH4)2[Ce(NO3)6]). Important fields of applications for cerium(iv) compounds include organic synthesis, bioinorganic chemistry, materials science, and industrial catalysis. In sharp contrast, organometallic cerium(iv) compounds are still exceedingly rare. The history of organocerium(iv) compounds is an exciting story of ups and downs. The so-called cerocene (= bis(η8-cyclooctatetraenyl) cerium) has been known since 1976. Other early reports e.g. about Cp4Ce (Cp = η5-cyclopentadienyl), were later disproven. However, significant progress in this field has been made in recent years through the use of carefully designed ligands and more sophisticated synthesis protocols. Taking the case of organocerium(iv) chemistry, this Tutorial Review also tries to exemplarily show how difficult synthetic and theoretical problems can eventually be solved through newly designed synthesis strategies (e.g. as accomplished for cyclopentadienyl and carbene derivatives) and a rewarding collaboration between synthetic and theoretical chemists (cf. the cerocene problem).

10.
Phys Chem Chem Phys ; 19(30): 20160-20171, 2017 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-28726907

RESUMEN

Density functional calculations have been performed to study selected hydrated lanthanide(iii) motexafins (Ln-Motex2+, Ln = La, Gd, Lu) by using energy-consistent 4f-in-core lanthanide pseudopotentials to include the major relativistic effects due to the heavy metals. The maximum number (n) of water molecules bound strongly to [Ln-Motex]2+ (Ln = La, Gd, Lu) was determined to be 6 by calculating the change of the Gibbs energies for the reactions [Ln-Motex(H2O)n]2+ + H2O → [Ln-Motex(H2O)n+1]2+. The number of water molecules coordinated directly to Ln3+ was found to be 3 for La, and 2 for Gd and Lu. The explicit treatment of the tightly bound water molecules in [Ln-Motex(H2O)6]2+ in combination with the COSMO solvation model yielded calculated reduction potentials and UV-vis absorption spectra in good agreement with available experimental data.

11.
Angew Chem Int Ed Engl ; 56(27): 7986-7990, 2017 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-28374566

RESUMEN

The energy transfer pathways in lanthanide antenna probes cannot be comprehensively rationalized by the currently available models, and their elucidation remains to be a challenging task. On the basis of quantum-chemical ab initio calculations of representative europium antenna complexes, an innovative energy resonance model is proposed, which is controlled by an overall nonet-quintet intersystem crossing on the basis of spin-orbit coupling among the sublevels of the involved states.

12.
J Comput Chem ; 37(20): 1914-23, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27316823

RESUMEN

Reactions involved in the autoxidation of ascorbate have been investigated with quantum chemical first-principles and ab initio methods. Reaction energies and Gibbs energies of the reactions were calculated at the density functional theory level applying the gradient-corrected BP86 and the hybrid B3LYP functionals together with def2-TZVP basis sets. Results of single-point CC2, CCSD, and CCSD(T) calculations were used for calibration of the density functional theory data and show excellent agreement with the B3LYP values. Based on the Gibbs energy ascorbic acid AscH2 is found to be the energetically lowest species in aqueous solution, whereas the monoanion ascorbate AscH - is the most abundant one near pH = 7. Asc 2- was found to be the preferred reducing agent for autoxidation and oxidation processes. The results also support a metal-catalyzed synthesis of the reactive oxygen species H2 O2 according to a redox cycling mechanism proposed in literature. © 2016 Wiley Periodicals, Inc.

13.
J Phys Chem A ; 120(22): 3966-74, 2016 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-27203481

RESUMEN

The geometric and electronic structure of the recently experimentally studied molecules ZCeF2 (Z = CH2, O) was investigated by density functional theory (DFT) and wave function-based ab initio methods. Special attention was paid to the Ce-Z metal-ligand bonding, especially to the nature of the interaction between the Ce 4f and the Z 2p orbitals and the possible multiconfigurational character arising from it, as well as to the assignment of an oxidation state of Ce reflecting the electronic structure. Complete active space self-consistent field (CASSCF) calculations were performed, followed by orbital rotations in the active orbital space. The methylene compound CH2CeF2 has an open-shell singlet ground state, which is characterized by a two-configurational wave function in the basis of the strongly mixed natural CASSCF orbitals. The system can also be described in a very compact way by the dominant Ce 4f(1) C 2p(1) configuration, if nearly pure Ce 4f and C 2p orbitals are used. In the basis of these localized orbitals, the molecule is almost monoconfigurational and should be best described as a Ce(III) system. The singlet ground state of the oxygen OCeF2 complex is of closed-shell character when a monoconfigurational wave function with very strongly mixed Ce 4f and O 2p CASSCF natural orbitals is used for the description. The transformation to orbitals localized on the cerium and oxygen atoms leads to a multiconfigurational wave function and reveals characteristics of a mixed valent Ce(IV)/Ce(III) compound. Additionally, the interactions of the localized active orbitals were analyzed by evaluating the expectation values of the charge fluctuation operator and the local spin operator. The Ce 4f and C 2p orbital interaction of the CH2CeF2 compound is weakly covalent and resembles the interaction of the H 1s orbitals in a stretched hydrogen dimer. In contrast, the interaction of the localized active orbitals for OCeF2 shows ionic character. Calculated vibrational Ce-C and Ce-O stretching frequencies at the DFT, CASSCF, second-order Rayleigh-Schrödinger perturbation theory (RS2C), multireference configuration interaction (MRCI), as well as single, doubles, and perturbative triples coupled cluster (CCSD(T)) level are reported and compared to experimental infrared absorption data in a Ne and Ar matrix.

14.
Phys Chem Chem Phys ; 18(4): 3003-10, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26738568

RESUMEN

The global optimization of molecular clusters is an important topic encountered in many fields of chemistry. In our previous work (Phys. Chem. Chem. Phys., 2015, 17, 24173), we successfully applied the recently introduced artificial bee colony (ABC) algorithm to the global optimization of atomic clusters and introduced the corresponding software "ABCluster". In the present work, ABCluster was extended to the optimization of clusters of rigid molecules. Here "rigid" means that all internal degrees of freedom of the constituent molecules are frozen. The algorithm was benchmarked by TIP4P water clusters (H2O)N (N ≤ 20), for which all global minima were successfully located. It was further applied to various clusters of different chemical nature: 10 microhydration clusters, 4 methanol microsolvation clusters, 4 nonpolar clusters and 2 ion-aromatic clusters. In all the cases we obtained results consistent with previous experimental or theoretical studies.

15.
J Chem Theory Comput ; 11(3): 962-8, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26579750

RESUMEN

The third-order incremental dual-basis set zero-buffer approach (inc3-db-B0) is an efficient, accurate, and black-box quantum chemical method for obtaining correlation energies of large systems, and it has been successfully applied to many real chemical problems. In this work, we extend this approach to high-spin open-shell systems. In the open-shell approach, we will first decompose the occupied orbitals of a system into several domains by a K-means clustering algorithm. The essential part is that we preserve the active (singly occupied) orbitals in all the calculations of the domain correlation energies. The duplicated contributions of the active orbitals to the correlation energy are subtracted from the incremental expansion. All techniques of truncating the virtual space such as the B0 approximation can be applied. This open-shell inc3-db-B0 approach is combined with the CCSD and CCSD(T) methods and applied to the computations of a singlet-triplet gap and an electron detachment process. Our approach exhibits an accuracy better than 0.6 kcal/mol or 0.3 eV compared with the standard implementation, while it saves a large amount of the computational time and can be efficiently parallelized.

16.
Angew Chem Int Ed Engl ; 54(48): 14295-8, 2015 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-26437573

RESUMEN

The asymmetric catalysis of the intramolecular enone [2+2] photocycloaddition has been subject of extensive experimental studies, however theoretical insight to its regulatory mechanism is still sparse. Accurate quantum chemical calculations at the CASPT2//CASSCF level of theory associated with energy-consistent relativistic pseudopotentials provide a basis for the first regulation theory that the enantioselective reaction is predominantly controlled by the presence of relativistic effects, that is, spin-orbit coupling resulting from heavy atoms in the chiral Lewis acid catalyst.

17.
Phys Chem Chem Phys ; 17(37): 24173-81, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26327507

RESUMEN

Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we introduce a relatively new swarm intelligence algorithm, i.e. the artificial bee colony (ABC) algorithm proposed in 2005, to this field. It is inspired by the foraging behavior of a bee colony, and only three parameters are needed to control it. We applied it to several potential functions of quite different nature, i.e., the Coulomb-Born-Mayer, Lennard-Jones, Morse, Z and Gupta potentials. The benchmarks reveal that for long-ranged potentials the ABC algorithm is very efficient in locating the global minimum, while for short-ranged ones it is sometimes trapped into a local minimum funnel on a potential energy surface of large clusters. We have released an efficient, user-friendly, and free program "ABCluster" to realize the ABC algorithm. It is a black-box program for non-experts as well as experts and might become a useful tool for chemists to study clusters.


Asunto(s)
Algoritmos , Animales , Abejas/fisiología , Biomimética
18.
Phys Chem Chem Phys ; 17(32): 20605-16, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26203895

RESUMEN

The experimentally observed extraction complexes of trivalent lanthanide Eu(3+) and actinide Am(3+)/Cm(3+) cations with Cyanex272 [bis(2,4,4-trimethylpentyl) phosphinic acid, denoted as HC272] and Cyanex301 [bis(2,4,4-trimethylpentyl) dithiophosphinic acid, denoted as HC301] have been studied by using relativistic energy-consistent 4f- and 5f-in-core pseudopotentials for trivalent f elements, combined with density functional theory and a continuum solvation model. It has been found that, as a result of hydrogen bonding, HC272 exists primarily as a self-associated species, whereas HC301 is preferably a monomer. The calculations show that in case of all three M(3+) (M = Eu, Am, Cm) ions for HC272 the extraction complexes M[H(C272)2]3 are formed prior to M(C272)3, whereas for HC301 the extraction complexes M(C301)3 have priority over M[H(C301)2]3. The calculated M-O and M-S bond lengths and the M-P distances of these preferred extraction complexes agree very well with the available experimental data. The obtained changes of the Gibbs free energies in the liquid-liquid extraction reactions (1): Maqu(3+) + 3(HC272)2,org→ M[H(C272)2]3,org + 3Haqu(+) and (2): Maqu(3+) + 3HC301org→ M(C301)3,org + 3Haqu(+) agree with the experimentally observed thermodynamical priorities of HC272 and HC301, i.e., HC272 prefers Eu(3+) over Am(3+)/Cm(3+) and HC301 prefers Am(3+)/Cm(3+) over Eu(3+). The obtained changes of the Gibbs free energies in reaction (2) (Eu, 68.1 kJ mol(-1); Am, 46.5 kJ mol(-1)) agree quite well with the experimental findings (Eu, 63.3 kJ mol(-1); Am, 44.1 kJ mol(-1)).

19.
J Comput Chem ; 36(24): 1812-7, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26149792

RESUMEN

A detailed theoretical study of the mechanism and energetics of an organocatalysis based on C=N activation by halogen-bonding is presented for the hydrocyanation of N-benzylidenemethylamine. The calculations at the level of scalar-relativistic gradient-corrected density functional theory give an insight in this catalytic concept and provide information on the characteristics of four different monodentate catalyst candidates acting as halogen-bond donors during the reaction.

20.
J Phys Chem A ; 119(4): 774-80, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25547783

RESUMEN

For a wide range of trivalent lanthanide ion coordination complexes of tricapped trigonal prism or monocapped square antiprism configurations, the bonds between the central lanthanide ions and the capping ligands are found to violate Badger's rule: they can get weaker as they get shorter. We demonstrate that this observation originates from the screening and repulsion effect of the prism ligands. Both effects enhance as the electric field of the central ion or the softness of the prism ligands increases. Thus, for heavier lanthanides, despite the fact that the capping bond could be shorter, it is more efficient to be weakened by the prism ligands, being inherently labile. This concept of "labile capping bonds phenomenon" is then successfully used to interpret many problems in lanthanide(III) hydration, e.g., why the water exchange rate of a lanthanide(III) complex is much higher in a twisted square antiprism than in square antiprism configuration. Thus, the theory proposed in this paper offers new insights in understanding chemical problems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA