Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 14(16)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39199831

RESUMEN

Optimal veterinary care of managed elephant populations is vital due to the continued decline of wild populations. Appropriate health monitoring and accurate disease diagnosis include hematologic evaluation. Elephant hematology is distinctive in that elephants have high percentages of monocytes in health. Elephant monocytes also have unusual morphology, a feature shared with manatees and rock hyraxes. Manual white blood cell counting is used for elephant hematology, as analyzers are generally inaccurate. The aims of this study were to evaluate basic cell isolation and functional testing protocols for use in elephant monocyte research, and to test several available antibodies via flow cytometry for use in elephant monocyte identification. Peripheral blood samples from five Asian elephants (Elephas maximus) were used. Methods for monocyte isolation and evaluation of phagocytic function were established. Putative lymphocyte and monocyte populations were identified using a scatter on flow cytometry. Antibodies against CD11b, CD11c, CD14, and ionized calcium-binding adapter molecule 1 (IBA1) were tested, with IBA1 showing the highest apparent diagnostic utility in labeling monocytes. Combined flow cytometric scatter and IBA1 positivity appear to identify Asian elephant monocytes. These data provide a methodologic basis for further investigation into elephant monocyte function and immune response to infection.

2.
Vet Sci ; 10(5)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37235419

RESUMEN

The emergence of immunotherapy for the treatment of human cancers has heralded a new era in oncology, one that is making its way into the veterinary clinic. As the immune system of many animal species commonly seen by veterinarians is similar to humans, there is great hope for the translation of human therapies into veterinary oncology. The simplest approach for veterinarians would be to adopt existing reagents that have been developed for human medicine, due to the potential of reduced cost and the time it takes to develop a new drug. However, this strategy may not always prove to be effective and safe with regard to certain drug platforms. Here, we review current therapeutic strategies that could exploit human reagents in veterinary medicine and also those therapies which may prove detrimental when human-specific biological molecules are used in veterinary oncology. In keeping with a One Health framework, we also discuss the potential use of single-domain antibodies (sdAbs) derived from camelid species (also known as Nanobodies™) for therapies targeting multiple veterinary animal patients without the need for species-specific reformulation. Such reagents would not only benefit the health of our veterinary species but could also guide human medicine by studying the effects of outbred animals that develop spontaneous tumors, a more relevant model of human diseases compared to traditional laboratory rodent models.

3.
J Anim Ecol ; 92(7): 1456-1469, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36637333

RESUMEN

Habitat fragmentation is an important driver of biodiversity loss and can be remediated through management actions aimed at maintenance of natural connectivity in metapopulations. Connectivity may protect populations from infectious diseases by preserving immunogenetic diversity and disease resistance. However, connectivity could exacerbate the risk of infectious disease spread across vulnerable populations. We tracked the spread of a novel strain of Mycoplasma ovipneumoniae in a metapopulation of desert bighorn sheep Ovis canadensis nelsoni in the Mojave Desert to investigate how variation in connectivity among populations influenced disease outcomes. M. ovipneumoniae was detected throughout the metapopulation, indicating that the relative isolation of many of these populations did not protect them from pathogen invasion. However, we show that connectivity among bighorn sheep populations was correlated with higher immunogenetic diversity, a protective immune response and lower disease prevalence. Variation in protective immunity predicted infection risk in individual bighorn sheep and was associated with heterozygosity at genetic loci linked to adaptive and innate immune signalling. Together, these findings may indicate that population connectivity maintains immunogenetic diversity in bighorn sheep populations in this system and has direct effects on immune responses in individual bighorn sheep and their susceptibility to infection by a deadly pathogen. Our study suggests that the genetic benefits of population connectivity could outweigh the risk of infectious disease spread and supports conservation management that maintains natural connectivity in metapopulations.


Asunto(s)
Enfermedades Transmisibles , Neumonía , Enfermedades de las Ovejas , Borrego Cimarrón , Animales , Ovinos , Neumonía/veterinaria , Variación Genética , Inmunidad , Enfermedades de las Ovejas/epidemiología
4.
J Virol ; 96(17): e0025622, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36000847

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19), the most severe pandemic in a century. The virus gains access to host cells when the viral spike protein (S-protein) binds to the host cell surface receptor angiotensin-converting enzyme 2 (ACE2). Studies have attempted to understand SARS-CoV-2 S-protein interactions with vertebrate orthologs of ACE2 by expressing ACE2 orthologs in mammalian cells and measuring viral infection or S-protein binding. Often, these cells only transiently express ACE2 proteins, and the levels of ACE2 at the cell surface are not quantified. Here, we describe a cell-based assay that uses stably transfected cells expressing ACE2 proteins in a bicistronic vector with an easy-to-quantify reporter protein, Thy1.1. We found that both the binding of the S-protein receptor-binding domain (RBD) and infection with a SARS-CoV-2 pseudovirus are proportional to the amount of human ACE2 expressed at the cell surface, which can be inferred by quantifying the level of Thy1.1. We also compared different ACE2 orthologs, which were expressed in stably transfected cells expressing equivalent levels of Thy1.1. When ranked for either viral infectivity or RBD binding, mouse ACE2 had a weak to undetectable affinity for S-protein, while human ACE2 had the highest level detected, and feline ACE2 had an intermediate phenotype. The generation of stably transfected cells whose ACE2 level can be normalized for cross-ortholog comparisons allows us to create a reusable cellular library useful for measuring emerging SARS-CoV-2 variants' abilities to potentially infect different animals. IMPORTANCE SARS-CoV-2 is a zoonotic virus responsible for the worst global pandemic in a century. An understanding of how the virus can infect other vertebrate species is important for controlling viral spread and understanding the natural history of the virus. Here, we describe a method to generate cells stably expressing different orthologs of ACE2, the receptor for SARS-CoV-2, on the surface of a human cell line. We find that both the binding of the viral spike protein receptor-binding domain (RBD) and infection of cells with a SARS-CoV-2 pseudovirus are proportional to the ACE2 levels at the cell surface. This method will allow the creation of a library of stably transfected cells expressing similar levels of different vertebrate ACE2 orthologs, which can be used repeatedly for identifying vertebrate species that may be susceptible to infection with SARS-CoV-2 and its many variants.


Asunto(s)
Glicoproteína de la Espiga del Coronavirus , Enzima Convertidora de Angiotensina 2/genética , Animales , COVID-19 , Gatos , Humanos , Ratones , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , Receptores Virales/metabolismo , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
5.
J Immunol ; 208(10): 2273-2282, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35428693

RESUMEN

Successful direct MHC class I Ag presentation is dependent on the protein degradation machinery of the cell to generate antigenic peptides that can be loaded onto MHC class I molecules for surveillance by CD8+ T cells of the immune system. Most often this process involves the ubiquitin (Ub)-proteasome system; however, other Ub-like proteins have also been implicated in protein degradation and direct Ag presentation. In this article, we examine the role of neuronal precursor cell-expressed developmentally downregulated protein 8 (NEDD8) in direct Ag presentation in mouse cells. NEDD8 is the Ub-like protein with highest similarity to Ub, and fusion of NEDD8 to the N terminus of a target protein can lead to the degradation of target proteins. We find that appending NEDD8 to the N terminus of the model Ag OVA resulted in degradation by both the proteasome and the autophagy protein degradation pathways, but only proteasomal degradation, involving the proteasomal subunit NEDD8 ultimate buster 1, resulted in peptide presentation. When directly compared with Ub, NEDD8 fusion was less efficient at generating peptides. However, inactivation of the NEDD8-conugation machinery by treating cells with MLN4924 inhibited the presentation of peptides from the defective ribosomal product-derived form of a model Ag. These results demonstrate that NEDD8 activity in the cell is important for direct Ag presentation, but not by directly targeting proteins for degradation.


Asunto(s)
Presentación de Antígeno , Complejo de la Endopetidasa Proteasomal , Animales , Linfocitos T CD8-positivos/metabolismo , Ciclopentanos , Ratones , Proteína NEDD8/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas , Pirimidinas , Ubiquitina/metabolismo , Ubiquitinas/metabolismo
6.
bioRxiv ; 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34729559

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, the most severe pandemic in a century. The virus gains access to host cells when the viral Spike protein (S-protein) binds to the host cell-surface receptor angiotensin-converting enzyme 2 (ACE2). Studies have attempted to understand SARS-CoV-2 S-protein interaction with vertebrate orthologs of ACE2 by expressing ACE2 orthologs in mammalian cells and measuring viral infection or S-protein binding. Often these cells only transiently express ACE2 proteins and levels of ACE2 at the cell surface are not quantified. Here, we describe a cell-based assay that uses stably transfected cells expressing ACE2 proteins in a bi-cistronic vector with an easy to quantify reporter protein to normalize ACE2 expression. We found that both binding of the S-protein receptor-binding domain (RBD) and infection with a SARS-CoV-2 pseudovirus is proportional to the amount of human ACE2 expressed at the cell surface, which can be inferred by quantifying the level of reporter protein, Thy1.1. We also compared different ACE2 orthologs which were expressed in stably transfected cells expressing equivalent levels of Thy1.1. When ranked for either viral infectivity or RBD binding, mouse ACE2 had a weak to undetectable affinity for S-protein while human ACE2 was the highest level detected and feline ACE2 had an intermediate phenotype. The generation of stably transfected cells whose ACE2 level can be normalized for cross-ortholog comparisons allows us to create a reusable cellular library useful for measuring emerging SARS-CoV-2 variant's ability to potentially infect different animals. IMPORTANCE: SARS-CoV-2 is a zoonotic virus responsible for the worst global pandemic in a century. An understanding of how the virus can infect other vertebrate species is important for controlling viral spread and understanding the natural history of the virus. Here we describe a method to generate cells stably expressing equivalent levels of different ACE2 orthologs, the receptor for SARS-CoV-2, on the surface of a human cell line. We find that both binding of the viral Spike protein receptor binding domain (RBD) and infection of cells with a SARS-CoV-2 pseudovirus are proportional to ACE2 levels at the cell surface. Adaptation of this method will allow for the creation of a library of stable transfected cells expressing equivalent levels of different vertebrate ACE2 orthologs which can be repeatedly used for identifying vertebrate species which may be susceptible to infection with SARS-CoV-2 and its many variants.

7.
Cells ; 10(10)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34685640

RESUMEN

Neuronal precursor cell-expressed developmentally down-regulated protein 8 (NEDD8) is a ubiquitin-like protein (UBL) whose canonical function involves binding to, and thus, activating Cullin-Ring finger Ligases (CRLs), one of the largest family of ubiquitin ligases in the eukaryotic cell. However, in recent years, several non-canonical protein substrates of NEDD8 have been identified. Here we attempt to review the recent literature regarding non-canonical NEDDylation of substrates with a particular focus on how the covalent modification of NEDD8 alters the protein substrate. Like much in the study of ubiquitin and UBLs, there are no clear and all-encompassing explanations to satisfy the textbooks. In some instances, NEDD8 modification appears to alter the substrates localization, particularly during times of stress. NEDDylation may also have conflicting impacts upon a protein's stability: some reports indicate NEDDylation may protect against degradation whereas others show NEDDylation can promote degradation. We also examine how many of the in vitro studies measuring non-canonical NEDDylation were conducted and compare those conditions to those which may occur in vivo, such as cancer progression. It is likely that the conditions used to study non-canonical NEDDylation are similar to some types of cancers, such as glioblastoma, colon and rectal cancers, and lung adenocarcinomas. Although the full outcomes of non-canonical NEDDylation remain unknown, our review of the literature suggests that researchers keep an open mind to the situations where this modification occurs and determine the functional impacts of NEDD8-modification to the specific substrates which they study.


Asunto(s)
Proteína NEDD8/metabolismo , Animales , Humanos , Estabilidad Proteica , Proteolisis , Proteómica , Proteínas Ribosómicas/metabolismo , Especificidad por Sustrato
8.
Cells ; 10(4)2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918652

RESUMEN

While the role of ubiquitin in protein degradation is well established, the role of other ubiquitin-like proteins (UBLs) in protein degradation is less clear. Neural precursor cell expressed developmentally down-regulated protein 8 (NEDD8) is the UBL with the highest level of amino acids identified when compared to ubiquitin. Here we tested if the N-terminal addition of NEDD8 to a protein of interest could lead to degradation. Mutation of critical glycine residues required for normal NEDD8 processing resulted in a non-cleavable fusion protein that was rapidly degraded within the cells by both the proteasome and autophagy. Both degradation pathways were dependent on a functional ubiquitin-conjugation system as treatment with MLN7243 increased levels of non-cleavable NEDD8-GFP. The degradation of non-cleavable, N-terminal NEDD8-GFP was not due to a failure of GFP folding as different NEDD8-GFP constructs with differing abilities to fold and fluoresce were similarly degraded. Though the fusion of NEDD8 to a protein resulted in degradation, treatment of cells with MLN4924, an inhibitor of the E1 activating enzyme for NEDD8, failed to prevent degradation of other destabilized substrates. Taken together these data suggest that under certain conditions, such as the model system described here, the covalent linkage of NEDD8 to a protein substrate may result in the target proteins degradation.


Asunto(s)
Proteínas Fluorescentes Verdes/metabolismo , Proteína NEDD8/metabolismo , Proteolisis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Animales , Autofagosomas/metabolismo , Línea Celular , Fluorescencia , Semivida , Humanos , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo , Pliegue de Proteína/efectos de los fármacos , Pirazoles/farmacología , Pirimidinas/farmacología , Sulfuros/farmacología , Sulfonamidas/farmacología , Ubiquitina/metabolismo , Ubiquitinación/efectos de los fármacos
9.
Immunohorizons ; 5(3): 135-146, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33685907

RESUMEN

The ability to modulate direct MHC class I (MHC I) Ag presentation is a desirable goal for the treatment of a variety of conditions, including autoimmune diseases, chronic viral infections, and cancers. It is therefore necessary to understand how changes in the cellular environment alter the cells' ability to present peptides to T cells. The unfolded protein response (UPR) is a signaling pathway activated by the presence of excess unfolded proteins in the endoplasmic reticulum. Previous studies have indicated that chemical induction of the UPR decreases direct MHC I Ag presentation, but the precise mechanisms are unknown. In this study, we used a variety of small molecule modulators of different UPR signaling pathways to query which UPR signaling pathways can alter Ag presentation in both murine and human cells. When signaling through the PERK pathway, and subsequent eIF2α phosphorylation, was blocked by treatment with GSK2656157, MHC I Ag presentation remain unchanged, whereas treatment with salubrinal, which has the opposite effect of GSK2656157, decreases both Ag presentation and overall cell-surface MHC I levels. Treatment with 4µ8C, an inhibitor of the IRE1α UPR activation pathway that blocks splicing of Xbp1 mRNA, also diminished MHC I Ag presentation. However, 4µ8C treatment unexpectedly led to an increase in eIF2α phosphorylation in addition to blocking IRE1α signaling. Given that salubrinal and 4µ8C lead to eIF2α phosphorylation and similar decreases in Ag presentation, we conclude that UPR signaling through PERK, leading to eIF2α phosphorylation, results in a modest decrease in direct MHC I Ag presentation.


Asunto(s)
Adenina/análogos & derivados , Endorribonucleasas/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Indoles/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Respuesta de Proteína Desplegada , Adenina/farmacología , Animales , Presentación de Antígeno/efectos de los fármacos , Línea Celular , Cinamatos/farmacología , Factor 2 Eucariótico de Iniciación/antagonistas & inhibidores , Humanos , Himecromona/análogos & derivados , Himecromona/farmacología , Ratones , Fosforilación , ARN Mensajero/genética , Transducción de Señal/efectos de los fármacos , Tiourea/análogos & derivados , Tiourea/farmacología , Proteína 1 de Unión a la X-Box/metabolismo
10.
Biochem Pharmacol ; 183: 114317, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33152346

RESUMEN

Coibamide A is a potent cancer cell toxin and one of a select group of natural products that inhibit protein entry into the secretory pathway via a direct inhibition of the Sec61 protein translocon. Many Sec61 client proteins are clinically relevant drug targets once trafficked to their final destination in or outside the cell, however the use of Sec61 inhibitors to block early biosynthesis of specific proteins is at a pre-clinical stage. In the present study we evaluated the action of coibamide A against human epidermal growth factor receptor (HER, ErbB) proteins in representative breast and lung cancer cell types. HERs were selected for this study as they represent a family of Sec61 clients that is frequently dysregulated in human cancers, including coibamide-sensitive cell types. Although coibamide A inhibits biogenesis of a broad range of Sec61 substrate proteins in a presumed substrate-nonselective manner, endogenous HER3 (ErbB-3) and EGFR (ErbB-1) proteins were more sensitive to coibamide A, and the related Sec61 inhibitor apratoxin A, than HER2 (ErbB-2). Despite this rank order of sensitivity (HER3 > EGFR > HER2), Sec61-dependent inhibition by coibamide A was sufficient to decrease cell surface expression of HER2. We report that coibamide A- or apratoxin A-mediated block of HER3 entry into the secretory pathway is unlikely to be mediated by the HER3 signal peptide alone. HER3 (G11L/S15L), that is fully resistant to the highly substrate-selective cotransin analogue CT8, was more resistant than wild-type HER3 but only at low coibamide A (3 nM) concentrations; HER3 (G11L/S15L) expression was inhibited by higher concentrations of either natural product. Time- and concentration-dependent decreases in HER protein expression induced a commensurate reduction in AKT/MAPK signaling in breast and lung cancer cell types and loss in cell viability. Coibamide A potentiated the cytotoxic efficacy of small molecule kinase inhibitors lapatinib and erlotinib in breast and lung cancer cell types, respectively. These data indicate that natural product modulators of Sec61 function have value as chemical probes to interrogate HER/ErbB signaling in treatment-resistant human cancers.


Asunto(s)
Depsipéptidos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Canales de Translocación SEC/antagonistas & inhibidores , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Células MCF-7 , Canales de Translocación SEC/metabolismo
11.
Infect Immun ; 88(8)2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32423914

RESUMEN

Chlamydia bacteria are obligate intracellular pathogens which can cause a variety of disease in humans and other vertebrate animals. To successfully complete its life cycle, Chlamydia must evade both intracellular innate immune responses and adaptive cytotoxic T cell responses. Here, we report on the role of the chlamydial lipooligosaccharide (LOS) in evading the immune response. Chlamydia infection is known to block the induction of apoptosis. However, when LOS synthesis was inhibited during Chlamydia trachomatis infection, HeLa cells regained susceptibility to apoptosis induction following staurosporine treatment. Additionally, the delivery of purified LOS to the cytosol of cells increased the levels of the antiapoptotic protein survivin. An increase in survivin levels was also detected following C. trachomatis infection, which was reversed by blocking LOS synthesis. Interestingly, while intracellular delivery of lipopolysaccharide (LPS) derived from Escherichia coli was toxic to cells, LOS from C. trachomatis did not induce any appreciable cell death, suggesting that it does not activate pyroptosis. Chlamydial LOS was also a poor stimulator of maturation of bone marrow-derived dendritic cells compared to E. coli LPS. Previous work from our group indicated that LOS synthesis during infection was necessary to alter host cell antigen presentation. However, direct delivery of LOS to cells in the absence of infection did not alter antigenic peptide presentation. Taken together, these data suggest that chlamydial LOS, which is remarkably conserved across the genus Chlamydia, may act both directly and indirectly to allow the pathogen to evade the innate and adaptive immune responses of the host.


Asunto(s)
Inmunidad Adaptativa/efectos de los fármacos , Infecciones por Chlamydia/inmunología , Chlamydia trachomatis/inmunología , Evasión Inmune , Inmunidad Innata/efectos de los fármacos , Lipopolisacáridos/farmacología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/inmunología , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Linfocitos B/microbiología , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/inmunología , Línea Celular Transformada , Infecciones por Chlamydia/genética , Infecciones por Chlamydia/microbiología , Infecciones por Chlamydia/patología , Chlamydia trachomatis/patogenicidad , Células Dendríticas/citología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Inhibidores Enzimáticos/farmacología , Escherichia coli/química , Expresión Génica , Células HeLa , Humanos , Lipopolisacáridos/inmunología , Ratones Endogámicos C57BL , Ratones Transgénicos , Especificidad de la Especie , Estaurosporina/farmacología , Survivin/genética , Survivin/inmunología
12.
PLoS One ; 15(1): e0227322, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31895937

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0225579.].

13.
PLoS One ; 14(11): e0225579, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31774834

RESUMEN

In this study, we aimed to evaluate to what extent different assays of innate immunity reveal similar patterns of variation across ungulate species. We compared several measures of innate antibacterial immune function across seven different ungulate species using blood samples obtained from captive animals maintained in a zoological park. We measured mRNA expression of two receptors involved in innate pathogen detection, toll-like receptors 2 and 5 (TLR2 and 5), the bactericidal capacity of plasma, as well as the number of neutrophils and lymphocytes. Species examined included aoudad (Ammotragus lervia), American bison (Bison bison bison), yak (Bos grunniens), Roosevelt elk (Cervus canadensis roosevelti), fallow deer (Dama dama), sika deer (Cervus nippon), and Damara zebra (Equus quagga burchellii). Innate immunity varied among ungulate species. However, we detected strong, positive correlations between the different measures of innate immunity-specifically, TLR2 and TLR5 were correlated, and the neutrophil to lymphocyte ratio was positively associated with TLR2, TLR5, and bacterial killing ability. Our results suggest that ecoimmunological study results may be quite robust to the choice of assays, at least for antibacterial innate immunity; and that, despite the complexity of the immune system, important sources of variation in immunity in natural populations may be discoverable with comparatively simple tools.


Asunto(s)
Antibacterianos/inmunología , Bacterias/inmunología , Inmunidad Innata/inmunología , Linfocitos/inmunología , Neutrófilos/inmunología , Receptores Toll-Like/inmunología , Animales , Antibacterianos/sangre , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Bison/inmunología , Ciervos/inmunología , Receptores Toll-Like/metabolismo
14.
Methods Mol Biol ; 1988: 149-157, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31147939

RESUMEN

Accurately determining the number of peptide-MHC class I complexes on the cell surface is necessary when evaluating cellular processes or pharmaceuticals that alter the antigen presentation machinery. Here I describe a quantitative flow cytometry application for determining the number of peptide-MHC complexes on the surface of cells grown in tissue culture that express an endogenous protein from which the peptide is derived. The procedure requires a monoclonal antibody with the ability to distinguish MHC class I molecules presenting the peptide of interest from other peptide-MHC complexes. Fluorescence signal measured on antibody-labeled cells can be compared to fluorescent-calibrated beads to determine the relative number of antibodies bound to the cell surface and hence the number of specific peptide-MHC complexes expressed by the cell. As new monoclonal antibodies with TCR-like specificity for peptide-MHC complexes are created, this method will be helpful in quantifying the exact numbers of complexes generated by cell types and relating these numbers to physiological outcomes of T cell activation.


Asunto(s)
Anticuerpos/metabolismo , Presentación de Antígeno/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Biología Molecular/métodos , Receptores de Antígenos de Linfocitos T/metabolismo , Animales , Fluorescencia , Humanos , Ligandos , Péptidos/metabolismo , Coloración y Etiquetado
15.
J Trace Elem Med Biol ; 50: 640-645, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29929926

RESUMEN

Intestinal absorption of immunoglobulins is critical for health and survival of newborn calves because there is no transfer of immunoglobulins in utero. The objective of this study was to determine if feeding beef cows Se-enriched alfalfa hay during the last trimester of gestation improves passive transfer of ovalbumin (OVA), a surrogate protein marker for IgG absorption. Control cows (n = 15) were fed non-Se-fortified alfalfa hay (5.3 mg Se/head daily) plus a mineral supplement containing inorganic Se (3 mg Se/head daily). Med-Se (n = 15) and High-Se cows (n = 15) were fed Se-biofortified alfalfa hay (27.6 and 57.5 mg Se/head daily, respectively); both groups received mineral supplement without added Se. Calves were randomly assigned to receive orally administered OVA at 12, 24, or 36 h of age. Calves that received their oral dose of OVA at 12 h of age had higher serum OVA concentrations across the first 48 h of life if born to High-Se cows compared to calves born to Control cows (P = 0.05), with intermediate values for calves born to Med-Se cows. Our results, using OVA as a model for passive transfer, suggest that if calves do not receive adequate colostrum to reach maximum pinocytosis, then supranutritional Se supplementation in beef cattle may improve passive transfer in their calves, if calves receive colostrum within the first 12 h of age.


Asunto(s)
Animales Recién Nacidos/sangre , Medicago sativa , Ovalbúmina/sangre , Alimentación Animal/análisis , Animales , Bovinos , Femenino , Embarazo
16.
J Immunol ; 200(3): 928-936, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29282303

RESUMEN

Infected or transformed cells must present peptides derived from endogenous proteins on MHC class I molecules to be recognized and targeted for elimination by Ag-specific cytotoxic T cells. In the first step of peptide generation, proteins are degraded by the proteasome. In this study, we investigated the role of the ubiquitin-specific protease 14 (Usp14), a proteasome-associated deubiquitinase, in direct Ag presentation using a ligand-stabilized model protein expressed as a self-antigen. Chemical inhibition of Usp14 diminished direct presentation of the model antigenic peptide, and the effect was especially pronounced when presentation was restricted to the defective ribosomal product (DRiP) form of the protein. Additionally, presentation specifically from DRiP Ags was diminished by expression of a catalytically inactive form of Usp14. Usp14 inhibition did not appreciably alter protein synthesis and only partially delayed protein degradation as measured by a slight increase in the half-life of the model protein when its degradation was induced. Taken together, these data indicate that functional Usp14 enhances direct Ag presentation, preferentially of DRiP-derived peptides, suggesting that the processing of DRiPs is in some ways different from other forms of Ag.


Asunto(s)
Presentación de Antígeno/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Péptidos/inmunología , Linfocitos T Citotóxicos/inmunología , Ubiquitina Tiolesterasa/antagonistas & inhibidores , Animales , Presentación de Antígeno/efectos de los fármacos , Línea Celular Tumoral , Ratones , Biosíntesis de Proteínas , Proteolisis , Pirroles/farmacología , Pirrolidinas/farmacología
17.
PLoS One ; 12(6): e0180415, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28662203

RESUMEN

Ecoimmunology is a burgeoning field of ecology which studies immune responses in wildlife by utilizing general immune assays such as the detection of natural antibody. Unlike adaptive antibodies, natural antibodies are important in innate immune responses and often recognized conserved epitopes present in pathogens. Here, we describe a procedure for measuring natural antibodies reactive to bacterial antigens that may be applicable to a variety of organisms. IgM from desert bighorn sheep plasma samples was tested for reactivity to outer membrane proteins from Vibrio coralliilyticus, a marine bacterium to which sheep would have not been exposed. Immunoblotting demonstrated bighorn sheep IgM could bind to a variety of bacterial cell envelope proteins while ELISA analysis allowed for rapid determination of natural antibody levels in hundreds of individual animals. Natural antibody levels were correlated with the ability of plasma to kill laboratory strains of E. coli bacteria. Finally, we demonstrate that natural antibody levels varied in two distinct populations of desert bighorn sheep. These data demonstrate a novel and specific measure of natural antibody function and show that this varies in ecologically relevant ways.


Asunto(s)
Inmunoglobulina M/inmunología , Ovinos/inmunología , Animales , Clima Desértico , Ensayo de Inmunoadsorción Enzimática , Enfermedades de las Ovejas/inmunología , Enfermedades de las Ovejas/microbiología
18.
BMC Microbiol ; 17(1): 98, 2017 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-28438125

RESUMEN

BACKGROUND: Chlamydia species are obligate intracellular bacteria that infect a broad range of mammalian hosts. Members of related genera are pathogens of a variety of vertebrate and invertebrate species. Despite the diversity of Chlamydia, all species contain an outer membrane lipooligosaccharide (LOS) that is comprised of a genus-conserved, and genus-defining, trisaccharide 3-deoxy-D-manno-oct-2-ulosonic acid Kdo region. Recent studies with lipopolysaccharide inhibitors demonstrate that LOS is important for the C. trachomatis developmental cycle during RB- > EB differentiation. Here, we explore the effects of one of these inhibitors, LPC-011, on the developmental cycle of five chlamydial species. RESULTS: Sensitivity to the drug varied in some of the species and was conserved between others. We observed that inhibition of LOS biosynthesis in some chlamydial species induced formation of aberrant reticulate bodies, while in other species, no change was observed to the reticulate body. However, loss of LOS production prevented completion of the chlamydial reproductive cycle in all species tested. In previous studies we found that C. trachomatis and C. caviae infection enhances MHC class I antigen presentation of a model self-peptide. We find that treatment with LPC-011 prevents enhanced host-peptide presentation induced by infection with all chlamydial-species tested. CONCLUSIONS: The data demonstrate that LOS synthesis is necessary for production of infectious progeny and inhibition of LOS synthesis induces aberrancy in certain chlamydial species, which has important implications for the use of LOS synthesis inhibitors as potential antibiotics.


Asunto(s)
Proteínas Bacterianas/efectos de los fármacos , Proteínas Bacterianas/genética , Chlamydia/efectos de los fármacos , Chlamydia/crecimiento & desarrollo , Ácidos Hidroxámicos/antagonistas & inhibidores , Treonina/análogos & derivados , Secuencia de Aminoácidos , Ampicilina/farmacología , Animales , Antibacterianos/farmacología , Línea Celular/efectos de los fármacos , Línea Celular/microbiología , Chlamydia/genética , Chlamydia/patogenicidad , Infecciones por Chlamydia/tratamiento farmacológico , Citoplasma/microbiología , Fibroblastos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Interacciones Huésped-Patógeno , Humanos , Ácidos Hidroxámicos/administración & dosificación , Lipopolisacáridos/biosíntesis , Ratones , Pruebas de Sensibilidad Microbiana , Fenotipo , Filogenia , Biosíntesis de Proteínas/efectos de los fármacos , Alineación de Secuencia , Análisis de Secuencia de Proteína , Azúcares Ácidos , Treonina/administración & dosificación , Treonina/antagonistas & inhibidores
19.
Fish Shellfish Immunol ; 48: 136-44, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26581919

RESUMEN

Adult Chinook salmon (Oncorhynchus tshawytscha) migrate from salt water to freshwater streams to spawn. Immune responses in migrating adult salmon are thought to diminish in the run up to spawning, though the exact mechanisms for diminished immune responses remain unknown. Here we examine both adaptive and innate immune responses as well as pathogen burdens in migrating adult Chinook salmon in the Upper Willamette River basin. Messenger RNA transcripts encoding antibody heavy chain molecules slightly diminish as a function of time, but are still present even after fish have successfully spawned. In contrast, the innate anti-bacterial effector proteins present in fish plasma rapidly decrease as spawning approaches. Fish also were examined for the presence and severity of eight different pathogens in different organs. While pathogen burden tended to increase during the migration, no specific pathogen signature was associated with diminished immune responses. Transcript levels of the immunosuppressive cytokines IL-10 and TGF beta were measured and did not change during the migration. These results suggest that loss of immune functions in adult migrating salmon are not due to pathogen infection or cytokine-mediated immune suppression, but is rather part of the life history of Chinook salmon likely induced by diminished energy reserves or hormonal changes which accompany spawning.


Asunto(s)
Migración Animal/fisiología , Salmón/inmunología , Inmunidad Adaptativa , Animales , Femenino , Proteínas de Peces/inmunología , Inmunidad Innata , Interleucina-10/inmunología , Masculino , Estaciones del Año , Factor de Crecimiento Transformador beta/inmunología
20.
Infect Immun ; 84(2): 480-90, 2016 02.
Artículo en Inglés | MEDLINE | ID: mdl-26597986

RESUMEN

The direct major histocompatibility complex (MHC) class I antigen presentation pathway ensures intracellular peptides are displayed at the cellular surface for recognition of infected or transformed cells by CD8(+) cytotoxic T lymphocytes. Chlamydia spp. are obligate intracellular bacteria and, as such, should be targeted by CD8(+) T cells. It is likely that Chlamydia spp. have evolved mechanisms to avoid the CD8(+) killer T cell responses by interfering with MHC class I antigen presentation. Using a model system of self-peptide presentation which allows for posttranslational control of the model protein's stability, we tested the ability of various Chlamydia species to alter direct MHC class I antigen presentation. Infection of the JY lymphoblastoid cell line limited the accumulation of a model host protein and increased presentation of the model-protein-derived peptides. Enhanced self-peptide presentation was detected only when presentation was restricted to defective ribosomal products, or DRiPs, and total MHC class I levels remained unaltered. Skewed antigen presentation was dependent on a bacterial synthesized component, as evidenced by reversal of the observed phenotype upon preventing bacterial transcription, translation, and the inhibition of bacterial lipooligosaccharide synthesis. These data suggest that Chlamydia spp. have evolved to alter the host antigen presentation machinery to favor presentation of defective and rapidly degraded forms of self-antigen, possibly as a mechanism to diminish the presentation of peptides derived from bacterial proteins.


Asunto(s)
Presentación de Antígeno , Autoantígenos/inmunología , Chlamydia trachomatis/inmunología , Chlamydia trachomatis/patogenicidad , Antígenos de Histocompatibilidad Clase I/inmunología , Interacciones Huésped-Patógeno , Autoantígenos/genética , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Línea Celular , Infecciones por Chlamydia/inmunología , Infecciones por Chlamydia/microbiología , Humanos , Células MCF-7 , Microscopía Electrónica , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA