Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 413: 131467, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39260730

RESUMEN

Wastewater resources can be used to produce microbial protein for animal feed or organic fertiliser, conserving food chain resources. This investigation hasemployed thefermented sewage to photoheterotrophically grown purple non-sulfur bacteria (PNSB) in a 2.5 m3 pilot-scaleraceway-pond with infrared light to produce proteinaceous biomass. Fermented sewage with synthetic media consisting of sodium acetate and propionic acids at a surface-to-volume (S/V) ratio of 10 m2/m3 removed 89%, 93%, and 81% of chemical oxygen demand, ammonium nitrogen, and orthophosphate, respectively; whereas respective removal in fermented sewage alone without synthetic media was 73%, 73%, and 72% during batch operation of 120 h. The biomass yield of 0.88-0.95 g CODbiomass /g CODremoved with protein content of 40.3 ± 0.3%-43.9 ± 0.2% w/w was obtained for fermented sewage with synthetic media. The results revealed enhanced possibility of scaling-up the raceway reactor to recover resources from municipal wastewater and enable simultaneous high-rate PNSB single-cell protein production.

2.
Environ Res ; 212(Pt A): 113141, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35337835

RESUMEN

The application of waste-derived iron for reuse in wastewater treatment is an effective way of utilizing waste and attaining sustainability in the overall process. In the present investigation, bio-electro-Fenton process was initiated for the cathodic degradation of surfactants using waste-iron catalyzed MFC (WFe-MFC). The waste-iron was derived from spent tonner ink using calcination at 600 °C. Three surfactants namely, sodium dodecyl sulphate (SDS), cetyltrimethylammonium bromide, and Triton x-100 were selected as target pollutants. The effect of experimental factors like application of catalyst, contact time, external resistance, and anodic substrate concentration on the SDS degradation was investigated. At a neutral pH, the cathodic surfactants removal efficiency in WFe-MFC was above 85% in a contact time of 180 min with the initial surfactant concentration of ∼20 mg L-1 and external resistance of 100 Ω. The long-term operation using secondary treated real wastewater with unchanged cathode proved that the catalyst was still active to produce effluent SDS concentration of less than 1 mg L-1 in 4 h of contact time after 16 cycles. In a way, the present investigation suggests a potential application for spent tonner ink in the form of Fenton catalyst for wastewater treatment via bio-electro-Fenton MFC.


Asunto(s)
Hierro , Contaminantes Químicos del Agua , Catálisis , Electrodos , Peróxido de Hidrógeno , Oxidación-Reducción , Tensoactivos , Aguas Residuales , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA