Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38948850

RESUMEN

Decreased excitability of pyramidal tract neurons in layer 5B (PT5B) of primary motor cortex (M1) has recently been shown in a dopamine-depleted mouse model of parkinsonism. We hypothesized that decreased PT5B neuron excitability would substantially disrupt oscillatory and non-oscillatory firing patterns of neurons in layer 5 (L5) of primary motor cortex (M1). To test this hypothesis, we performed computer simulations using a previously validated computer model of mouse M1. Inclusion of the experimentally identified parkinsonism-associated decrease of PT5B excitability into our computational model produced a paradoxical increase in rest-state PT5B firing rate, as well as an increase in beta-band oscillatory power in local field potential (LFP). In the movement-state, PT5B population firing and LFP showed reduced beta and increased high-beta, low-gamma activity of 20-35 Hz in the parkinsonian, but not in control condition. The appearance of beta-band oscillations in parkinsonism would be expected to disrupt normal M1 motor output and contribute to motor activity deficits seen in patients with Parkinson's disease (PD).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA