Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Life Sci Space Res (Amst) ; 24: 116-121, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31987475

RESUMEN

We use the GEANT4 Monte Carlo code to calculate the radiation dose equivalent due to Galactic Cosmic Rays (GCRs) during an out-of-magnetosphere space flight. We provide a detailed analysis of the radiation dose composition, distinguishing between the contribution of primary GCR particles and different species of secondary particles. We show that for realistic shielding thicknesses, the radiation dose equivalent is mostly due to GCR protons and alpha particles. The Blood-Forming Organs (BFO) dose equivalent is the same in the shielding spheres with the radius of 50 and 100 cm, although the dose composition differs. We show that indirectly scattered secondary particles make up to 60% to the net radiation dose. Up to 90% of the secondary neutron dose equivalent is associated with indirectly scattered particles.


Asunto(s)
Radiación Cósmica , Exposición a la Radiación , Nave Espacial , Radiación Cósmica/efectos adversos , Protección Radiológica/métodos , Vuelo Espacial
2.
Life Sci Space Res (Amst) ; 21: 65-72, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31101156

RESUMEN

Space radiation is one of the main concerns for human space flights. The prediction of the radiation dose for the actual spacecraft geometry is very important for the planning of long-duration missions. We present a numerical method for the fast calculation of the radiation dose rate during a space flight. We demonstrate its application for dose calculations during the first and the second sessions of the MATROSHKA-R space experiment with a spherical tissue-equivalent phantom. The main advantage of the method is the short simulation time, so it can be applied for urgent radiation dose calculations for low-Earth orbit space missions. The method uses depth-dose curve and shield-and-composition distribution functions to calculate a radiation dose at the point of interest. The spacecraft geometry is processed into a shield-and-composition distribution function using a ray-tracing method. Depth-dose curves are calculated using the GEANT4 Monte-Carlo code (version 10.00.P02) for a double-layer aluminum-water shielding. Aluminum-water shielding is a good approximation of the real geometry, as water is a good equivalent for biological tissues, and aluminum is the major material of spacecraft bodies. The method is applied to model the dose distribution on the surface of the spherical phantom in the MATROSHKA-R space experiment. The experiment has been carried out onboard the ISS from 2004 to the present. The absorbed dose was determined in 32 points on the phantom's surface. We find a good agreement between the data obtained in the experiment and our calculation results. The simulation method is thus applicable for future radiation dose predictions for low-Earth orbit missions and experiments.


Asunto(s)
Radiación Cósmica , Fantasmas de Imagen , Monitoreo de Radiación/instrumentación , Simulación del Espacio/métodos , Nave Espacial/instrumentación , Humanos , Agencias Internacionales , Método de Montecarlo , Dosis de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA