Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(6)2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36984312

RESUMEN

The authors present in this paper the experimental results and conclusions obtained after conducting a comparative study on three samples of forged semi-finished products from the steel brands 10CrMo9-10, 25CrMo4, and 42CrMo4. These are common heat-resistant alloy steels used in various industries nationally and internationally. This study aimed to test under the same identical experimental conditions of forging and heat treatment of three samples made of three different brands of steels 10CrMo9-10, 25CrMo4, and 42CrMo4. Analyzing the experimental results obtained, it can be seen for which of the three brands of tested steels the best forging and heat treatment parameters are obtained. Following experimental research, the best material was determined by analyzing the results obtained for the mechanical characteristics (tensile tests according to DNVGL-RP0034-SFC2 and NACE MR0175-hardness 207-235 HBW) and austenitic grain size. The authors determined that among the three types of steels analyzed, 10CrMo9-10 best meets the imposed requirements. This statement is in view of the comparative analysis of the results of experimental research.

2.
Materials (Basel) ; 15(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36079388

RESUMEN

Materials used in the marine industry are exposed to extreme conditions, so it is necessary to meet remarkable characteristics, such as mechanical resistance, low density, and good corrosion resistance. The challenging environment requires continuous performance improvements, so this work is focused on developing new materials with superior properties, using the electrochemical deposition technique, which are convenient for marine engineering. High-entropy alloys have been attracting tremendous interest in many applications, due to their simple crystal structures and advantageous physical-chemical properties, such as high strength, anti-corrosion, erosion, and electro-magnetic capabilities. To identify the most appropriate compositions, MatCalc software was used to predict the structure and characteristics of the required materials, and thermodynamic and kinetic criteria calculations were performed. The modelling processes generated a series of optimal compositions in the AlCrCuFeNi alloy system, that are suitable to be used in anticorrosive and tribological applications. The composition and morphology of the obtained high entropy alloy thin films revealed a uniform structure, with a small grain profile. The corrosion resistance was investigated in artificial seawater to observe the behavior of the newly developed materials in demanding conditions, and the results showed improved results compared to the copper foil substrate.

3.
Materials (Basel) ; 15(14)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35888462

RESUMEN

In order to apply the concepts that allow the transition from a linear to a circular economy, waste generators and/or processors must identify those variants that generate products that can be used as secondary raw materials, thus also respecting the actions governing sustainable development. This paper presents such a variant, the briquetting of waste with high iron content, waste generated on current flows in steel enterprises or deposited in industrial sites. The obtained briquettes are analyzed for chemical and mechanical characteristics so that can be used as secondary materials in the steel production. An optimization of the chemical composition using generic algorithms is also proposed in order to obtain the mechanical characteristics necessary for the proper handling of these products.

4.
Materials (Basel) ; 16(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36614457

RESUMEN

A cellular concrete with a fine porous structure was experimentally made using the corrosion technique for aluminum powder as an expanding agent in an aqueous solution of Ca(OH)2. The originality of this paper was the use of our own production method for the fine aluminum powder through atomizing the recycled molten waste of this metal using concentrated jets of nitrogen. Additionally, the waste melting technique involved our own microwave heating method. A high weight proportion of calcined gypsum (maximum 82.3%) represented the main concrete binder. Using moderate contents of coal fly ash (3.6-11.1%) together with perlite (4.6-6.4%) to reduce the pore size and silica fume (0.3-1.2%) with pozzolanic properties, the aim was to obtain a macrostructure characterized by a very low pore size and to increase the compressive strength (by up to 4.1 MPa), despite the relatively low density (below 641 kg/m3). An industrial method of increasing the mechanical strength by steam curing fresh concrete was applied.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA