Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Acta Biochim Pol ; 46(1): 155-62, 1999.
Artículo en Inglés | MEDLINE | ID: mdl-10453991

RESUMEN

We have cloned and sequenced a cDNA of the human homologue of the Saccharomyces cerevisiae Suv3 putative RNA helicase which is indispensable for mitochondrial function in yeast. The human Suv-3-like protein has a typical mitochondrial leader sequence. Northern blot data and analysis of ESTs in the data banks indicate that this human gene (SUPV3L1) is expressed in practically all tissues, though at different levels. Sequence homology analysis has shown a strong conservation of the protein in a number of eukaryotic organisms -- plants, mammals and fungi, but no close homologues exist in bacteria with the exception of the purple bacterium Rhodobacter sphaeroides. This gene is thus ubiquitously present in all eukaryotic organisms.


Asunto(s)
Secuencia Conservada , ARN Helicasas/genética , Rhodobacter sphaeroides/enzimología , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Animales , Clonación Molecular , ARN Helicasas DEAD-box , ADN Complementario , Etiquetas de Secuencia Expresada , Humanos , Datos de Secuencia Molecular , Rhodobacter sphaeroides/genética , Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido
2.
Mol Gen Genet ; 260(1): 108-14, 1998 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9829834

RESUMEN

The yeast nuclear gene DSS1 codes for a mitochondrial protein containing regions of homology to bacterial RNase II and can act as a multicopy suppressor of a deletion of the SUV3 gene, which encodes an RNA helicase. In order to establish the function of the DSS1 gene in mitochondrial biogenesis we studied RNA metabolism in yeast strains disrupted for SUV3 or DSS1. The results indicate that in the absence of DSS1 the in vitro activity of 3'-5' exoribonuclease is abolished and mitochondrial translation is blocked. In disruption strains harboring intronless mitochondrial genomes steady-state levels of COB mRNA and 16S rRNA were very low, while in the presence of a mitochondrial genome containing the omega intron in the 21S rRNA gene the excised intron accumulates. Moreover we observed an accumulation of precursors of 21S rRNA and the VAR1 mRNA. All these phenotypes are virtually identical to those of strains in which SUV3 is disrupted. We suggest that the DSS1 gene product, like the SUV3 gene product, is a subunit of the yeast mitochondrial degradosome (mtEXO), and that this protein complex participates in intron-independent turnover and processing of mitochondrial transcripts. In addition our studies exclude any role for the NUC1 nuclease in these phenomena.


Asunto(s)
Endorribonucleasas/metabolismo , Exorribonucleasas/genética , Mitocondrias/enzimología , Complejos Multienzimáticos/metabolismo , Polirribonucleótido Nucleotidiltransferasa/metabolismo , ARN Helicasas/metabolismo , Procesamiento Postranscripcional del ARN , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Animales , Núcleo Celular/genética , Cricetinae , ARN Helicasas DEAD-box , Proteínas Fúngicas/genética , Genes Fúngicos , ARN Helicasas/genética , ARN de Hongos/metabolismo , Saccharomyces cerevisiae/enzimología
3.
Acta Biochim Pol ; 45(4): 935-40, 1998.
Artículo en Inglés | MEDLINE | ID: mdl-10397341

RESUMEN

Saccharomyces cerevisiae nuclear genes SUV3 and DSS1 encode putative RNA helicase and RNase II, respectively, which are subunits of the mitochondrial degradosome (mtEXO): a three-protein complex which has a 3' to 5' exoribonuclease activity and plays a major role in regulating stability of mitochondrial RNA. Lack of either of the two gene products results in a respiratory negative phenotype, while on the molecular level it causes a total block of mitochondrial translation, loss of the in vitro exoribonuclease activity and changes in stability and processing of many mtRNAs. We have found that the yeast nuclear gene PET127 present on a low or high copy number vector can effectively suppress the effects of the SUV3 or DSS1 gene disruptions. Since the product of the PET127 gene is involved in processing of the 5' ends of mitochondrial mRNAs, we suggest that there is a functional coupling between the 5' and 3' ends of mitochondrial mRNAs.


Asunto(s)
Proteínas Fúngicas/genética , Eliminación de Gen , Proteínas/genética , ARN Helicasas/genética , ARN , Proteínas de Saccharomyces cerevisiae , Transactivadores , Northern Blotting , ARN Helicasas DEAD-box , Proteínas Mitocondriales , Mutagénesis , ARN Mitocondrial , Saccharomyces cerevisiae/genética , Supresión Genética
5.
Gene ; 162(1): 81-5, 1995 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-7557422

RESUMEN

The nuclear gene NAM9 from Saccharomyces cerevisiae (Sc) codes for a protein which, on the basis of sequence homology, was previously postulated to be a mitochondrial (mt) equivalent of the Escherichia coli (Ec) S4 ribosomal protein (r-protein) [Boguta et al., Mol. Cell. Biol. 12 (1992) 402-412]. The mt-r character of the NAM9 product is now confirmed by cross-reaction with the antisera for the Sc mt r-proteins. The NAM9-1 mutation, characterized previously as the nuclear suppressor of some ochre mt mit- mutants, is found to be a single nucleotide substitution changing Ser82 to Leu within the part of NAM9 corresponding to the S4 region involved in interaction with the 16S rRNA. This indicates that the mechanism of NAM9-1 suppression could be analogous to the suppression due to ram (ribosomal ambiguity) mutations in the Ec structural gene encoding r-protein S4. The NAM9-1 mutation leads also to defect in respiratory growth in the background of the wild-type mit+ genome.


Asunto(s)
Núcleo Celular/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Mitocondrias/genética , Proteínas Nucleares , Proteínas Represoras , Proteínas Ribosómicas/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Supresión Genética , Secuencia de Aminoácidos , Secuencia de Bases , Compartimento Celular , Reacciones Cruzadas , Proteínas Fúngicas/inmunología , Datos de Secuencia Molecular , Mutación , Proteínas Ribosómicas/inmunología , Homología de Secuencia de Aminoácido
6.
Curr Genet ; 28(2): 108-12, 1995 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-8590460

RESUMEN

A previously unknown nuclear gene DSS-1 from Saccharomyces cerevisiae was cloned and sequenced. The gene was isolated as a multicopy suppressor of a disruption of the SUV-3 gene coding for a DEAD/H box protein involved in processing and turnover of mitochondrial transcripts. The DSS-1 gene codes for a 970 amino-acid protein of molecular weight 111 kDa and is necessary for mitochondrial biogenesis. Amino-acid sequence analysis indicates the presence of motifs characteristic for Escherichia coli RNase II, the dis3 protein from Schizosaccharomyces pombe, the cyt4 protein participating in RNA processing and turnover in Neurospora crassa mitochondria, and the vacB protein from Shigella flexneri. We suggest that the DSS-1 protein may be a component of the mitochondrial 3'-5' exoribonuclease complex.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas Fúngicas/genética , Genes Fúngicos , Mitocondrias/metabolismo , ARN Helicasas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , ARN Helicasas DEAD-box , Exorribonucleasas , Mitocondrias/genética , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Supresión Genética
7.
Mol Cell Biol ; 12(1): 402-12, 1992 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-1729612

RESUMEN

We report the genetic characterization, molecular cloning, and sequencing of a novel nuclear suppressor, the NAM9 gene from Saccharomyces cerevisiae, which acts on mutations of mitochondrial DNA. The strain NAM9-1 was isolated as a respiration-competent revertant of a mitochondrial mit mutant which carries the V25 ochre mutation in the oxi1 gene. Genetic characterization of the NAM9-1 mutation has shown that it is a nuclear dominant omnipotent suppressor alleviating several mutations in all four mitochondrial genes tested and has suggested its informational, and probably ribosomal, character. The NAM9 gene was cloned by transformation of the recipient oxi1-V25 mutant to respiration competence by using a gene bank from the NAM9-1 rho o strain. Orthogonal-field alternation gel electrophoresis analysis and genetic mapping localized the NAM9 gene on the right arm of chromosome XIV. Sequence analysis of the NAM9 gene showed that it encodes a basic protein of 485 amino acids with a presequence that could target the protein to the mitochondrial matrix. The N-terminal sequence of 200 amino acids of the deduced NAM9 product strongly resembles the S4 ribosomal proteins from chloroplasts and bacteria. Significant although less extensive similarity was found with ribosomal cytoplasmic proteins from lower eucaryotes, including S. cerevisiae. Chromosomal inactivation of the NAM9+ gene is not lethal to the cell but leads to respiration deficiency and loss of mitochondrial DNA integrity. We conclude that the NAM9 gene product is a mitochondrial ribosomal counterpart of S4 ribosomal proteins found in other systems and that the suppressor acts through decreasing the fidelity of translation.


Asunto(s)
Proteínas Fúngicas/genética , Genes Supresores , Mitocondrias/metabolismo , Proteínas Nucleares , Proteínas Represoras , Proteínas Ribosómicas/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Bacterias/genética , Secuencia de Bases , Cloroplastos/metabolismo , Clonación Molecular , ADN de Hongos , Eucariontes/genética , Datos de Secuencia Molecular , Mutación , Plantas/genética , Saccharomyces cerevisiae/ultraestructura , Alineación de Secuencia , Transcripción Genética , Transformación Genética
8.
Gene ; 88(2): 247-52, 1990 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-2189786

RESUMEN

We have cloned the Saccharomyces cerevisiae gene coding for the peroxisomal enzyme: fatty acyl-CoA oxidase (POX). The gene (named POX1) is unique in S. cerevisiae and has been identified through homology with the POX4 and POX5 genes of Candida tropicalis. The POX1 gene encodes a 84-kDa POX protein composed of 748 amino acids. The identity between the S. cerevisiae and C. tropicalis enzymes is about 40%, and there is a greater degree of similarity between the N termini than the C termini. A disruption of the POX1 coding sequence diminishes the ability of yeast cells to grow on oleic acid as a sole carbon source. The expression of the POX1 gene is regulated at the level of transcription, and is induced more than 25-fold by the addition of oleic acid to the medium.


Asunto(s)
Oxidorreductasas/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Transcripción Genética/efectos de los fármacos , Acil-CoA Oxidasa , Secuencia de Aminoácidos , Secuencia de Bases , Candida/genética , Medios de Cultivo , Sondas de ADN , ADN Recombinante , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Ácido Oléico , Ácidos Oléicos/farmacología , ARN Mensajero/análisis , Homología de Secuencia de Ácido Nucleico
9.
Cell ; 50(4): 573-84, 1987 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-3301004

RESUMEN

The yeast KEX1 gene product has homology to yeast carboxypeptidase Y. A mutant replacing serine at the putative active site of the KEX1 protein abolished activity in vivo. A probable site of processing by the KEX1 product is the C-terminus of the alpha-subunit of killer toxin, where toxin is followed in the precursor by 2 basic residues. Processing involves endoproteolysis following these basic residues and trimming of their C-terminal by a carboxypeptidase. Consistent with the KEX1 product being this carboxypeptidase is its role in alpha-factor pheromone production. In wild-type yeast, KEX1 is not essential for alpha-factor production, as the final pheromone repeat needs no C-terminal processing. However, in a mutant in which alpha-factor production requires a carboxypeptidase, pheromone production is KEX1-dependent.


Asunto(s)
Proteínas Fúngicas/genética , Genes Fúngicos , Biosíntesis de Péptidos , Péptidos , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Secuencia de Bases , Carboxipeptidasas/genética , Catepsina A , Proteínas Fúngicas/fisiología , Factores Asesinos de Levadura , Factor de Apareamiento , Precursores de Proteínas/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae , Homología de Secuencia de Ácido Nucleico
10.
Acta Microbiol Pol ; 36(1-2): 29-38, 1987.
Artículo en Inglés | MEDLINE | ID: mdl-2442970

RESUMEN

Aspergillus nidulans argB mutant was transformed with the plasmid DNA containing the argB gene. Analysis of transformants revealed that transformation was due to integration of either argB gene alone or the whole plasmid DNA into the A. nidulans genome. In 5 out of 23 transformants studied, integration took place in the locus different than the original argB locus. The amplification of integrated sequences was often observed. Integrated DNA was found to be mitotically stable, while the meiotic stability depends on the mode of integration. The activity of the ornithine carbamoyltransferase (the argB gene product) was measured and in some transformants bearing the amplified argB sequence was found to be strongly elevated.


Asunto(s)
Aspergillus nidulans/genética , ADN de Hongos/análisis , Genes Fúngicos , Ornitina Carbamoiltransferasa/genética , Transformación Genética , Aspergillus nidulans/enzimología , Enzimas de Restricción del ADN , Vectores Genéticos , Metilación , Hibridación de Ácido Nucleico , Ornitina Carbamoiltransferasa/metabolismo , Plásmidos
11.
J Gen Microbiol ; 132(6): 1729-37, 1986 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-3027235

RESUMEN

The Aspergillus nidulans argB gene coding for ornithine carbamoyltransferase (OTCase) is not expressed in Escherichia coli. However, E. coli OTCase-deficient strains transformed with plasmids carrying the argB gene from A. nidulans reverted to prototrophy at a high frequency. In these derivatives the argB gene became functional due to DNA rearrangements upstream of the coding sequence. Two types of rearrangement were characterized. One was identified as an insertion of IS2. The second was a deletion that resulted in transcription of the argB gene from the TcR gene promoter and translation from a newly created ribosome-binding site formed at the junction between the A. nidulans and vector DNA sequences.


Asunto(s)
Aspergillus nidulans/genética , Regulación de la Expresión Génica , Genes Bacterianos , Genes Fúngicos , Ornitina Carbamoiltransferasa/genética , Secuencia de Bases , Elementos Transponibles de ADN , ADN Bacteriano , ADN de Hongos , Escherichia coli/genética , Plásmidos , Biosíntesis de Proteínas , Transcripción Genética
12.
Acta Biochim Pol ; 33(3): 217-27, 1986.
Artículo en Inglés | MEDLINE | ID: mdl-3544621

RESUMEN

Differential centrifugation of the Aspergillus nidulans cell lysate shows that ornithine carbamoyltransferase (EC 2.1.3.3) appears mainly in the particulate (organellar) fraction. The enzyme was located to the mitochondria by co-sedimentation with cytochrome oxidase in isopycnic density gradient and by cytochemical-electron microscopic means. Arginase (EC 3.5.3.1) and ornithine delta-aminotransferase (E.C. 2.6.1.13) were found to reside in cytosol. The release of ornithine carbamoyltransferase from the organellar fraction by various agents indicates that the enzyme resides in the mitochondrial matrix. In Saccharomyces cerevisiae the plasmid pSAL43, carrying cloned Aspergillus nidulans ornithine carbamoyltransferase gene, directs the synthesis of the enzyme partially associated with yeast mitochondria even though the homologous yeast enzyme is exclusively cytosolic. The implications of these findings are discussed.


Asunto(s)
Aspergillus nidulans/enzimología , ADN Recombinante , Ornitina Carbamoiltransferasa/análisis , Saccharomyces cerevisiae/enzimología , Arginasa/análisis , Aspergillus nidulans/ultraestructura , Centrifugación por Gradiente de Densidad , Citosol/enzimología , Histocitoquímica , Microscopía Electrónica , Mitocondrias/enzimología , Organoides/enzimología , Ornitina Carbamoiltransferasa/genética , Ornitina-Oxo-Ácido Transaminasa/análisis , Plásmidos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Solubilidad
13.
Gene ; 25(1): 109-17, 1983 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-6363209

RESUMEN

An Aspergillus nidulans DNA fragment composed of two adjacent SalI subfragments (1.8 and 0.85 kb) that carries an argB gene complementing the yeast arg3 mutation has been isolated from two different gene libraries. Hybridization results and immunological tests indicate that the cloned fragment contains the A. nidulans structural gene coding for ornithine carbamoyltransferase (OTCase). Using the cloned gene as a probe, the specific mRNA was identified. The level of this RNA observed in A. nidulans strains grown under various conditions correlated with the level of the OTCase activity, suggesting transcriptional control of OTCase synthesis. Expression of the cloned gene in Saccharomyces cerevisiae does not depend on its orientation in the vector. In Escherichia coli, the cloned gene does not function; however arg- transformants revert to prototrophy with high frequency possibly due to DNA rearrangements within the recombinant plasmid.


Asunto(s)
Aspergillus nidulans/genética , Ornitina Carbamoiltransferasa/genética , Aspergillus nidulans/enzimología , Precipitación Química , Clonación Molecular , ADN de Hongos/biosíntesis , Escherichia coli/metabolismo , Genes Fúngicos , Inmunoquímica , Hibridación de Ácido Nucleico , Ornitina Carbamoiltransferasa/biosíntesis , Plásmidos , ARN de Hongos/biosíntesis , Transformación Genética
14.
Acta Microbiol Pol ; 29(3): 213-25, 1980.
Artículo en Inglés | MEDLINE | ID: mdl-19852107

RESUMEN

Fragments of Aspergillus nidulans DNA obtained after digestion with EcoRI, BamHI and HindIII endonucleases were cloned in Escherichia coli in plasmid pBR322. These gene banks were used for transformation of 15 E. coli auxotrophic mutants and in 5 cases prototrophic clones containing recombinant plasmids were selected. Three different recombinant plasmids conferring prototrophy to pyrF, proAB and argIF mutants were analyzed. Hybridization experiments indicated that in two of these plasmids the inserted fragment of DNA hybridized not only to the A. nidulans but also to the E. coli DNA.


Asunto(s)
Aspergillus nidulans/genética , ADN de Hongos/aislamiento & purificación , Escherichia coli/genética , Genes Fúngicos , Plásmidos/aislamiento & purificación , Clonación Molecular , ADN de Hongos/metabolismo , Desoxirribonucleasa BamHI/metabolismo , Desoxirribonucleasa EcoRI/metabolismo , Desoxirribonucleasa HindIII/metabolismo , Eliminación de Gen , Prueba de Complementación Genética , Hibridación de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA