RESUMEN
The butterflyfishes (Chaetodontidae), emblematic inhabitants of coral reef environments, encompass the majority of known coralivorous species and show one of the highest hybridization rates known among vertebrates, making them an important evolutionary model. The vast knowledge about their life history and phylogenetic relationships contrasts with scarce information on their karyotype evolution. Aiming to expand the cytogenetic data of butterflyfishes and evaluate their karyotype evolution in association with evolutionary aspects, we conducted an extensive cytogenetic analysis in 20 species (Heniochus pleurotaenia and 19 Chaetodon spp.) from the Atlantic and Indo-Pacific regions, comparing the karyotype macrostructure and the arrangement of the 18S and 5S rDNA repetitive DNA classes in their chromosomes. The results demonstrate that butterflyfishes underwent a period of karyotypic stasis, as evidenced by their homoploid and structurally identical basal karyotype, which has 2n = 48 acrocentric chromosomes and is shared by 90% of species. Only C. trifascialis (2n = 48; FN = 50) and C. andamanensis (2n = 48; FN = 52) stood out because they both had karyotypes that diverged due to pericentric inversions. The microstructural arrays of 18S rDNA and 5S rDNA sequences were primarily comprised by single and independent loci on homologous chromosomes, indicating that there was little reshuffling among sets of orthologue chromosomes of species. Geographical comparisons revealed similar karyotypes between individuals of C. striatus from the Greater Caribbean and those of the coast of Brazil, corroborating previous data of gene flow through Amazon/Orinoco plume. The conservative chromosomal patterns in the butterflyfishes, likely overcome the limitations related to segregation and pairing of heterospecific complements and reinforce their contribution to the high degree of hybrid viability and introgression in Chaetodon species.
RESUMEN
The freshwater family Siluridae occurs in Eurasia and is especially speciose in South and Southeast Asia, representing an important aquaculture and fishery targets. However, despite the restricted cytogenetic data, a high diploid number variation (from 2n=40 to 92) characterizes this fish group. Considering the large genomic divergence among its species, silurid genomes have experienced an enormous diversification throughout their evolutionary history. Here, we aim to investigate the chromosomal distribution of several microsatellite repeats in 12 Siluridae species and infer about their possible roles in the karyotype evolution that occurred in this group. Our results indicate divergent patterns of microsatellite distribution and accumulation among the analyzed species. Indeed, they are especially present in significant chromosome locations, such as the centromeric and telomeric regions, precisely the ones associated with several kinds of chromosomal rearrangements. Our data provide pieces of evidence that repetitive DNAs played a direct role in fostering the chromosomal differentiation and biodiversity in this fish family.