Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Bacteriol ; 191(3): 701-12, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19028900

RESUMEN

MalT is the central transcriptional activator of all mal genes in Escherichia coli. Its activity is controlled by the inducer maltotriose. It can be inhibited by the interaction with certain proteins, and its expression can be controlled. We report here a novel aspect of mal gene regulation: the effect of cytoplasmic glucose and glucokinase (Glk) on the activity and the expression of MalT. Amylomaltase (MalQ) is essential for the metabolism of maltose. It forms maltodextrins and glucose from maltose or maltodextrins. We found that glucose above a concentration of 0.1 mM blocked the activity of the enzyme. malQ mutants when grown in the absence of maltodextrins are endogenously induced by maltotriose that is derived from the degradation of glycogen. Therefore, the fact that glk malQ(+) mutants showed elevated mal gene expression finds its explanation in the reduced ability to remove glucose from MalQ-catalyzed maltodextrin formation and is caused by a metabolically induced MalQ(-) phenotype. However, even in mutants lacking glycogen, Glk controls endogenous induction. We found that overexpressed Glk due to its structural similarity with Mlc, the repressor of malT, binds to the glucose transporter (PtsG), releasing Mlc and thus increasing malT repression. In addition, even in mutants lacking Mlc (and glycogen), the overexpression of glk leads to a reduction in mal gene expression. We interpret this repression by a direct interaction of Glk with MalT concomitant with MalT inhibition. This repression was dependent on the presence of either maltodextrin phosphorylase or amylomaltase and led to the inactivation of MalT.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Glucoquinasa/metabolismo , Glucosa/farmacología , Cromatografía en Capa Delgada , Activación Enzimática/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Glucoquinasa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Sistema de la Enzima Desramificadora del Glucógeno/genética , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Mutación , Unión Proteica , Trisacáridos/farmacología
2.
J Bacteriol ; 187(24): 8332-9, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16321937

RESUMEN

Strains of Escherichia coli lacking MalQ (maltodextrin glucanotransferase or amylomaltase) are endogenously induced for the maltose regulon by maltotriose that is derived from the degradation of glycogen (glycogen-dependent endogenous induction). A high level of induction was dependent on the presence of MalP, maltodextrin phosphorylase, while expression was counteracted by MalZ, maltodextrin glucosidase. Glycogen-derived endogenous induction was sensitive to high osmolarity. This osmodependence was caused by MalZ. malZ, the gene encoding this enzyme, was found to be induced by high osmolarity even in the absence of MalT, the central regulator of all mal genes. The osmodependent expression of malZ was neither RpoS nor OmpR dependent. In contrast, the malPQ operon, whose expression was also increased at a high osmolarity, was partially dependent on RpoS. In the absence of glycogen, residual endogenous induction of the mal genes that is sensitive to increasing osmolarity can still be observed. This glycogen-independent endogenous induction is not understood, and it is not affected by altering the expression of MalP, MalQ, and MalZ. In particular, its independence from MalZ suggests that the responsible inducer is not maltotriose.


Asunto(s)
Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Polisacáridos/metabolismo , Equilibrio Hidroelectrolítico/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiología , Glucosiltransferasas/genética , Glucosiltransferasas/fisiología , Glucógeno/metabolismo , Sistema de la Enzima Desramificadora del Glucógeno/genética , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/fisiología , Factor sigma/genética , Factor sigma/fisiología , Transactivadores/genética , Transactivadores/fisiología , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Trisacáridos/metabolismo
3.
J Bacteriol ; 187(24): 8322-31, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16321936

RESUMEN

The maltose/maltodextrin regulon of Escherichia coli consists of 10 genes which encode a binding protein-dependent ABC transporter and four enzymes acting on maltodextrins. All mal genes are controlled by MalT, a transcriptional activator that is exclusively activated by maltotriose. By the action of amylomaltase, we prepared uniformly labeled [(14)C]maltodextrins from maltose up to maltoheptaose with identical specific radioactivities with respect to their glucosyl residues, which made it possible to quantitatively follow the rate of transport for each maltodextrin. Isogenic malQ mutants lacking maltodextrin phosphorylase (MalP) or maltodextrin glucosidase (MalZ) or both were constructed. The resulting in vivo pattern of maltodextrin metabolism was determined by analyzing accumulated [(14)C]maltodextrins. MalP(-) MalZ(+) strains degraded all dextrins to maltose, whereas MalP(+) MalZ(-) strains degraded them to maltotriose. The labeled dextrins were used to measure the rate of transport in the absence of cytoplasmic metabolism. Irrespective of the length of the dextrin, the rates of transport at a submicromolar concentration were similar for the maltodextrins when the rate was calculated per glucosyl residue, suggesting a novel mode for substrate translocation. Strains lacking MalQ and maltose transacetylase were tested for their ability to accumulate maltose. At 1.8 nM external maltose, the ratio of internal to external maltose concentration under equilibrium conditions reached 10(6) to 1 but declined at higher external maltose concentrations. The maximal internal level of maltose at increasing external maltose concentrations was around 100 mM. A strain lacking malQ, malP, and malZ as well as glycogen synthesis and in which maltodextrins are not chemically altered could be induced by external maltose as well as by all other maltodextrins, demonstrating the role of transport per se for induction.


Asunto(s)
Escherichia coli/metabolismo , Polisacáridos/metabolismo , Acetiltransferasas/genética , Transporte Biológico , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Eliminación de Gen , Glucanos/análisis , Glucosa/análisis , Glucosiltransferasas/genética , Sistema de la Enzima Desramificadora del Glucógeno/genética , Glicósido Hidrolasas/genética , Maltosa/análogos & derivados , Maltosa/análisis , Maltosa/metabolismo , Mutación , Oligosacáridos/análisis , Trisacáridos/análisis
4.
J Biol Chem ; 279(7): 5537-48, 2004 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-14645248

RESUMEN

2-O-alpha-mannosyl-D-glycerate (MGs) has been recognized as an osmolyte in hyperthermophilic but not mesophilic prokaryotes. We report that MG is taken up and utilized as sole carbon source by Escherichia coli K12, strainMC4100. Uptake is mediated by the P-enolpyruvate-dependent phosphotransferase system with the MG-inducible HrsA (now called MngA) protein as its specific EIIABC complex. The apparent Km of MG uptake in induced cells was 10 microm, and the Vmax was 0.65 nmol/min/10(9) cells. Inverted membrane vesicles harboring plasmid-encoded MngA phosphorylated MG in a P-enolpyruvate-dependent manner. A deletion mutant in mngA was devoid of MG transport but is complemented by a plasmid harboring mngA. Uptake of MG in MC4100 also caused induction of a regulon specifying the uptake and the metabolism of galactarate and glucarate controlled by the CdaR activator. The ybgG gene (now called mngB) the gene immediately downstream of mngA encodes a protein with alpha-mannosidase activity. farR, the gene upstream of mngA (now called mngR) had previously been characterized as a fatty acyl-responsive regulator; however, deletion of mngR resulted in the up-regulation of only two genes, mngA and mngB. The mngR deletion caused constitutive MG transport that became MG-inducible after transformation with plasmid expressed mngR. Thus, MngR is the regulator (repressor) of the MG transport/metabolism system. Thus, the mngR mngA mngB gene cluster encodes an MG utilizing system.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Glucolípidos/química , Fosfotransferasas/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Transporte Biológico , Cromatografía en Capa Delgada , Clonación Molecular , Elementos Transponibles de ADN , Eliminación de Gen , Genoma Bacteriano , Cinética , Modelos Biológicos , Modelos Químicos , Modelos Genéticos , Datos de Secuencia Molecular , Familia de Multigenes , Mutagénesis Sitio-Dirigida , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación , Plásmidos/metabolismo , Regiones Promotoras Genéticas , Factores de Tiempo , Regulación hacia Arriba , alfa-Manosidasa/metabolismo , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA