Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 12(17)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36080080

RESUMEN

Magnesium hydride (MgH2) has received outstanding attention as a safe and efficient material to store hydrogen because of its 7.6 wt.% hydrogen content and excellent reversibility. Nevertheless, the application of MgH2 is obstructed by its unfavorable thermodynamic stability and sluggish sorption kinetic. To overcome these drawbacks, ball milling MgH2 is vital in reducing the particle size that contribute to the reduction of the decomposition temperature. However, the milling process would become inefficient in reducing particle sizes when equilibrium between cold-welding and fracturing is achieved. Therefore, to further ameliorate the performance of MgH2, nanosized cobalt titanate (CoTiO3) has been synthesized using a solid-state method and was introduced to the MgH2 system. The different weight percentages of CoTiO3 were doped to the MgH2 system, and their catalytic function on the performance of MgH2 was scrutinized in this study. The MgH2 + 10 wt.% CoTiO3 composite presents the most outstanding performance, where the initial decomposition temperature of MgH2 can be downshifted to 275 °C. Moreover, the MgH2 + 10 wt.% CoTiO3 absorbed 6.4 wt.% H2 at low temperature (200 °C) in only 10 min and rapidly releases 2.3 wt.% H2 in the first 10 min, demonstrating a 23-times-faster desorption rate than as-milled MgH2 at 300 °C. The desorption activation energy of the 10 wt.% CoTiO3-doped MgH2 sample was dramatically lowered by 30.4 kJ/mol compared to undoped MgH2. The enhanced performance of the MgH2-CoTiO3 system is believed to be due to the in situ formation of MgTiO3, CoMg2, CoTi2, and MgO during the heating process, which offer a notable impact on the behavior of MgH2.

2.
Sci Rep ; 10(1): 9207, 2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32513958

RESUMEN

Currently, the development of the sodium-ion (Na-ion) batteries as an alternative to lithium-ion batteries has been accelerated to meet the energy demands of large-scale power applications. The difficulty of obtaining suitable electrode materials capable of storing large amount of Na-ion arises from the large radius of Na-ion that restricts its reversible capacity. Herein, Mn2O3 powders are synthesised through the thermal conversion of MnCO3 and reported for the first time as an anode for Na-ion batteries. The phase, morphology and charge/discharge characteristics of Mn2O3 obtained are evaluated systematically. The cubic-like Mn2O3 with particle sizes approximately 1.0-1.5 µm coupled with the formation of Mn2O3 sub-units on its surface create a positive effect on the insertion/deinsertion of Na-ion. Mn2O3 delivers a first discharge capacity of 544 mAh g-1 and retains its capacity by 85% after 200 cycles at 100 mA g-1, demonstrating the excellent cyclability of the Mn2O3 electrode. Therefore, this study provides a significant contribution towards exploring the potential of Mn2O3 as a promising anode in the development of Na-ion batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA