Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 15745, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37735612

RESUMEN

Low-cost approaches for mass production of III-V-based photovoltaics are highly desired today. For the first time, this work presents industrially relevant mask and plate for front metallization of III-V-based solar cells replacing expensive photolithography. Metal contacts are fabricated by nickel (Ni) electroplating directly onto the solar cell's front using a precisely structured mask. Inkjet printing offers low-cost and high-precision processing for application of an appropriate plating resist. It covers the solar cell's front side with narrow openings for subsequent electroplating. The width of the resulting Ni contacts is as low as (10.5 ± 0.8) µm with sharp edges and homogenous shape. The 4 cm2-sized champion III-V-on-silicon triple-junction solar cell with mask and plate front metallization reaches a certified conversion efficiency η of (31.6 ± 1.1) % (AM1.5 g spectrum). It performs just as well as the reference sample with photolithography-structured evaporated front contacts, which reaches η = (31.4 ± 1.1) %.

2.
ACS Appl Mater Interfaces ; 14(36): 41149-41155, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36041083

RESUMEN

Sprayed transparent conductive oxides (TCOs) are an interesting alternative to sputtered TCOs for many applications due to the possible high throughput and a simple, atmospheric pressure process of spray deposition. In this work, the growth mechanism of sprayed ZnO:In was analyzed by transmission Kikuchi diffraction (TKD) analysis of the thin film's crystal orientation, which shows a preferred orientation of the growing grains and thus proves that the deposition occurs from the gas phase. It was observed that with increasing thickness of the layer, the average grain size increases and the measured resistivity significantly reduces to ≈5-6 × 10-3 Ω cm for layers of >500 nm thickness. Since many applications also require good electrical contact formation, the contact resistivity and the interface between sprayed IZO and n-type poly-Si and p-type GaAs, two materials that are commonly used in III-V/silicon tandem solar cells, were investigated by electrical measurements and high-resolution transmission electron microscopy (TEM) analyses. The interlayers observed in TEM were investigated by energy-dispersive X-ray spectroscopy (EDS) line scans. The results suggest that oxidic interlayers at the substrate/IZO interface are responsible for the observed higher contact resistivity compared to the contact resistivity of sputtered indium tin oxide (ITO) references. The results presented in this work lead to a better understanding of the deposition process occurring in spray pyrolysis and thus allow a more targeted optimization of process parameters depending on the future requirements of the application.

3.
ACS Appl Mater Interfaces ; 14(9): 11322-11329, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35119838

RESUMEN

This paper describes the way to fabricate two-terminal tandem solar cells using Si heterojunction (SHJ) bottom cells and GaAs-relevant III-V top cells by "smart stack", an approach enabling the series connection of dissimilar solar cells through Pd nanoparticle (NP) arrays. It was suggested that placing the Pd NP arrays directly on typical SHJ cells results in poor tandem performance because of the insufficient electrical contacts and/or deteriorated passivation quality of the SHJ cells. Therefore, hydrogenated nanocrystalline Si (nc-Si:H) layers were introduced between Pd NPs and SHJ cells to improve the electrical contacts and preserve the passivation quality. Such nc-Si:H-capped SHJ cells were integrated with InGaP/AlGaAs double-junction cells, and a certified efficiency of 27.4% (under AM 1.5 G) was achieved. In addition, this paper addresses detailed analyses of the 27.4% cell. It was revealed that the cell had a relatively large gap at the smart stack interface, which limited the short-circuit current density (thereby the efficiency) of the cell. Therefore, higher efficiency would be expected by reducing the interfacial gap distance, which is governed by the height of the Pd NPs.

4.
Nat Commun ; 6: 8286, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26369620

RESUMEN

Photosynthesis is nature's route to convert intermittent solar irradiation into storable energy, while its use for an industrial energy supply is impaired by low efficiency. Artificial photosynthesis provides a promising alternative for efficient robust carbon-neutral renewable energy generation. The approach of direct hydrogen generation by photoelectrochemical water splitting utilizes customized tandem absorber structures to mimic the Z-scheme of natural photosynthesis. Here a combined chemical surface transformation of a tandem structure and catalyst deposition at ambient temperature yields photocurrents approaching the theoretical limit of the absorber and results in a solar-to-hydrogen efficiency of 14%. The potentiostatically assisted photoelectrode efficiency is 17%. Present benchmarks for integrated systems are clearly exceeded. Details of the in situ interface transformation, the electronic improvement and chemical passivation are presented. The surface functionalization procedure is widely applicable and can be precisely controlled, allowing further developments of high-efficiency robust hydrogen generators.

5.
Science ; 339(6123): 1057-60, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23328392

RESUMEN

Photovoltaics based on nanowire arrays could reduce cost and materials consumption compared with planar devices but have exhibited low efficiency of light absorption and carrier collection. We fabricated a variety of millimeter-sized arrays of p-type/intrinsic/n-type (p-i-n) doped InP nanowires and found that the nanowire diameter and the length of the top n-segment were critical for cell performance. Efficiencies up to 13.8% (comparable to the record planar InP cell) were achieved by using resonant light trapping in 180-nanometer-diameter nanowires that only covered 12% of the surface. The share of sunlight converted into photocurrent (71%) was six times the limit in a simple ray optics description. Furthermore, the highest open-circuit voltage of 0.906 volt exceeds that of its planar counterpart, despite about 30 times higher surface-to-volume ratio of the nanowire cell.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA